Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝐹 ) |
2 |
|
algextdeg.l |
⊢ 𝐿 = ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
3 |
|
algextdeg.d |
⊢ 𝐷 = ( deg1 ‘ 𝐸 ) |
4 |
|
algextdeg.m |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
5 |
|
algextdeg.f |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
6 |
|
algextdeg.e |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
7 |
|
algextdeg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
8 |
|
algextdeglem.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
9 |
|
algextdeglem.y |
⊢ 𝑃 = ( Poly1 ‘ 𝐾 ) |
10 |
|
algextdeglem.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
11 |
|
algextdeglem.g |
⊢ 𝐺 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
12 |
|
algextdeglem.n |
⊢ 𝑁 = ( 𝑥 ∈ 𝑈 ↦ [ 𝑥 ] ( 𝑃 ~QG 𝑍 ) ) |
13 |
|
algextdeglem.z |
⊢ 𝑍 = ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) |
14 |
|
algextdeglem.q |
⊢ 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) ) |
15 |
|
algextdeglem.j |
⊢ 𝐽 = ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐺 “ 𝑝 ) ) |
16 |
|
algextdeglem.r |
⊢ 𝑅 = ( rem1p ‘ 𝐾 ) |
17 |
|
algextdeglem.h |
⊢ 𝐻 = ( 𝑝 ∈ 𝑈 ↦ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
18 |
|
algextdeglem.t |
⊢ 𝑇 = ( ◡ ( deg1 ‘ 𝐾 ) “ ( -∞ [,) ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
19 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐻 “s 𝑃 ) = ( 𝐻 “s 𝑃 ) ) |
20 |
10
|
a1i |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑃 ) ) |
21 |
1
|
sdrgdrng |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐾 ∈ DivRing ) |
22 |
6 21
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
23 |
22
|
drngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝐾 ∈ Ring ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑝 ∈ 𝑈 ) |
26 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) |
27 |
1
|
fveq2i |
⊢ ( Monic1p ‘ 𝐾 ) = ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
28 |
26 5 6 4 7 27
|
minplym1p |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Monic1p ‘ 𝐾 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Monic1p ‘ 𝐾 ) ) |
30 |
|
eqid |
⊢ ( Unic1p ‘ 𝐾 ) = ( Unic1p ‘ 𝐾 ) |
31 |
|
eqid |
⊢ ( Monic1p ‘ 𝐾 ) = ( Monic1p ‘ 𝐾 ) |
32 |
30 31
|
mon1puc1p |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Monic1p ‘ 𝐾 ) ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) |
33 |
24 29 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) |
34 |
16 9 10 30
|
r1pcl |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝑝 ∈ 𝑈 ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) → ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑈 ) |
35 |
24 25 33 34
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑈 ) |
36 |
|
eqid |
⊢ ( deg1 ‘ 𝐾 ) = ( deg1 ‘ 𝐾 ) |
37 |
16 9 10 30 36
|
r1pdeglt |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝑝 ∈ 𝑈 ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
38 |
24 25 33 37
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
39 |
1
|
fveq2i |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
40 |
9 39
|
eqtri |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
41 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
42 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
43 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
44 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
45 |
6 44
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
46 |
8 1 41 42 43 45
|
irngssv |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
47 |
46 7
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐸 ) ) |
48 |
|
eqid |
⊢ { 𝑝 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = { 𝑝 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } |
49 |
|
eqid |
⊢ ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 ) |
50 |
|
eqid |
⊢ ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
51 |
8 40 41 5 6 47 42 48 49 50 4
|
minplycl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) |
52 |
51 10
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ 𝑈 ) |
53 |
1 3 9 10 52 45
|
ressdeg1 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
55 |
38 54
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) < ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
56 |
5
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
57 |
56
|
drngringd |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
58 |
|
eqid |
⊢ ( Poly1 ‘ 𝐸 ) = ( Poly1 ‘ 𝐸 ) |
59 |
|
eqid |
⊢ ( PwSer1 ‘ 𝐾 ) = ( PwSer1 ‘ 𝐾 ) |
60 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) = ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) |
61 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) = ( Base ‘ ( Poly1 ‘ 𝐸 ) ) |
62 |
58 1 9 10 45 59 60 61
|
ressply1bas2 |
⊢ ( 𝜑 → 𝑈 = ( ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) ) |
63 |
|
inss2 |
⊢ ( ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) |
64 |
62 63
|
eqsstrdi |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) |
65 |
64 52
|
sseldd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) |
66 |
26 5 6 4 7
|
irngnminplynz |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) ) |
67 |
3 58 26 61
|
deg1nn0cl |
⊢ ( ( 𝐸 ∈ Ring ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ∧ ( 𝑀 ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) ) → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℕ0 ) |
68 |
57 65 66 67
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℕ0 ) |
69 |
9 36 18 68 23 10
|
ply1degleel |
⊢ ( 𝜑 → ( ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑇 ↔ ( ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑈 ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) < ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑇 ↔ ( ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑈 ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) < ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
71 |
35 55 70
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑇 ) |
72 |
71
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑇 ) |
73 |
|
oveq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) = ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
74 |
73
|
eqeq2d |
⊢ ( 𝑝 = 𝑞 → ( 𝑞 = ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ↔ 𝑞 = ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) ) |
75 |
|
eqcom |
⊢ ( 𝑞 = ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) ↔ ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) = 𝑞 ) |
76 |
74 75
|
bitrdi |
⊢ ( 𝑝 = 𝑞 → ( 𝑞 = ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ↔ ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) = 𝑞 ) ) |
77 |
9 36 18 68 23 10
|
ply1degltel |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝑇 ↔ ( 𝑞 ∈ 𝑈 ∧ ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ≤ ( ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) ) ) |
78 |
77
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → 𝑞 ∈ 𝑈 ) |
79 |
77
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ≤ ( ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) |
80 |
53
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) = ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) = ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) |
82 |
79 81
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ≤ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) |
83 |
36 9 10
|
deg1cl |
⊢ ( 𝑞 ∈ 𝑈 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
84 |
78 83
|
syl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
85 |
68
|
nn0zd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℤ ) |
86 |
53 85
|
eqeltrrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℤ ) |
87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℤ ) |
88 |
|
degltlem1 |
⊢ ( ( ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ∈ ( ℕ0 ∪ { -∞ } ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℤ ) → ( ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ≤ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) ) |
89 |
84 87 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ≤ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) ) |
90 |
82 89
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
91 |
|
fldsdrgfld |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
92 |
5 6 91
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
93 |
1 92
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
94 |
|
fldidom |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ IDomn ) |
95 |
93 94
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ IDomn ) |
96 |
95
|
idomdomd |
⊢ ( 𝜑 → 𝐾 ∈ Domn ) |
97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → 𝐾 ∈ Domn ) |
98 |
23 28 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) |
99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) |
100 |
9 10 30 16 36 97 78 99
|
r1pid2 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) = 𝑞 ↔ ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
101 |
90 100
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) = 𝑞 ) |
102 |
76 78 101
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ∃ 𝑝 ∈ 𝑈 𝑞 = ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
103 |
102
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑇 ∃ 𝑝 ∈ 𝑈 𝑞 = ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
104 |
17
|
fompt |
⊢ ( 𝐻 : 𝑈 –onto→ 𝑇 ↔ ( ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑇 ∧ ∀ 𝑞 ∈ 𝑇 ∃ 𝑝 ∈ 𝑈 𝑞 = ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) ) |
105 |
72 103 104
|
sylanbrc |
⊢ ( 𝜑 → 𝐻 : 𝑈 –onto→ 𝑇 ) |
106 |
9
|
ply1ring |
⊢ ( 𝐾 ∈ Ring → 𝑃 ∈ Ring ) |
107 |
23 106
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
108 |
19 20 105 107
|
imasbas |
⊢ ( 𝜑 → 𝑇 = ( Base ‘ ( 𝐻 “s 𝑃 ) ) ) |
109 |
78
|
ex |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝑇 → 𝑞 ∈ 𝑈 ) ) |
110 |
109
|
ssrdv |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑈 ) |
111 |
|
eqid |
⊢ ( 𝑃 ↾s 𝑇 ) = ( 𝑃 ↾s 𝑇 ) |
112 |
111 10
|
ressbas2 |
⊢ ( 𝑇 ⊆ 𝑈 → 𝑇 = ( Base ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
113 |
110 112
|
syl |
⊢ ( 𝜑 → 𝑇 = ( Base ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
114 |
|
ssidd |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑇 ) |
115 |
|
eqid |
⊢ ( 𝐻 “s 𝑃 ) = ( 𝐻 “s 𝑃 ) |
116 |
|
eqid |
⊢ ( Base ‘ ( 𝐻 “s 𝑃 ) ) = ( Base ‘ ( 𝐻 “s 𝑃 ) ) |
117 |
110
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑇 ⊆ 𝑈 ) |
118 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑥 ∈ 𝑇 ) |
119 |
117 118
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑥 ∈ 𝑈 ) |
120 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑇 ) |
121 |
117 120
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑈 ) |
122 |
|
foeq3 |
⊢ ( 𝑇 = ( Base ‘ ( 𝐻 “s 𝑃 ) ) → ( 𝐻 : 𝑈 –onto→ 𝑇 ↔ 𝐻 : 𝑈 –onto→ ( Base ‘ ( 𝐻 “s 𝑃 ) ) ) ) |
123 |
108 122
|
syl |
⊢ ( 𝜑 → ( 𝐻 : 𝑈 –onto→ 𝑇 ↔ 𝐻 : 𝑈 –onto→ ( Base ‘ ( 𝐻 “s 𝑃 ) ) ) ) |
124 |
105 123
|
mpbid |
⊢ ( 𝜑 → 𝐻 : 𝑈 –onto→ ( Base ‘ ( 𝐻 “s 𝑃 ) ) ) |
125 |
124
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝐻 : 𝑈 –onto→ ( Base ‘ ( 𝐻 “s 𝑃 ) ) ) |
126 |
9 10 16 30 17 23 98
|
r1plmhm |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑃 LMHom ( 𝐻 “s 𝑃 ) ) ) |
127 |
126
|
lmhmghmd |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑃 GrpHom ( 𝐻 “s 𝑃 ) ) ) |
128 |
|
ghmmhm |
⊢ ( 𝐻 ∈ ( 𝑃 GrpHom ( 𝐻 “s 𝑃 ) ) → 𝐻 ∈ ( 𝑃 MndHom ( 𝐻 “s 𝑃 ) ) ) |
129 |
127 128
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑃 MndHom ( 𝐻 “s 𝑃 ) ) ) |
130 |
129
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝐻 ∈ ( 𝑃 MndHom ( 𝐻 “s 𝑃 ) ) ) |
131 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
132 |
|
eqid |
⊢ ( +g ‘ ( 𝐻 “s 𝑃 ) ) = ( +g ‘ ( 𝐻 “s 𝑃 ) ) |
133 |
115 10 116 119 121 125 130 131 132
|
mhmimasplusg |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( ( 𝐻 ‘ 𝑥 ) ( +g ‘ ( 𝐻 “s 𝑃 ) ) ( 𝐻 ‘ 𝑦 ) ) = ( 𝐻 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ) |
134 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝐸 ∈ Field ) |
135 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
136 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
137 |
1 2 3 4 134 135 136 8 9 10 11 12 13 14 15 16 17 18 119
|
algextdeglem7 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 ∈ 𝑇 ↔ ( 𝐻 ‘ 𝑥 ) = 𝑥 ) ) |
138 |
118 137
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑥 ) = 𝑥 ) |
139 |
1 2 3 4 134 135 136 8 9 10 11 12 13 14 15 16 17 18 121
|
algextdeglem7 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑦 ∈ 𝑇 ↔ ( 𝐻 ‘ 𝑦 ) = 𝑦 ) ) |
140 |
120 139
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑦 ) = 𝑦 ) |
141 |
138 140
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( ( 𝐻 ‘ 𝑥 ) ( +g ‘ ( 𝐻 “s 𝑃 ) ) ( 𝐻 ‘ 𝑦 ) ) = ( 𝑥 ( +g ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) ) |
142 |
107
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
143 |
9 22
|
ply1lvec |
⊢ ( 𝜑 → 𝑃 ∈ LVec ) |
144 |
9 36 18 68 23
|
ply1degltlss |
⊢ ( 𝜑 → 𝑇 ∈ ( LSubSp ‘ 𝑃 ) ) |
145 |
|
eqid |
⊢ ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 ) |
146 |
111 145
|
lsslvec |
⊢ ( ( 𝑃 ∈ LVec ∧ 𝑇 ∈ ( LSubSp ‘ 𝑃 ) ) → ( 𝑃 ↾s 𝑇 ) ∈ LVec ) |
147 |
143 144 146
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ↾s 𝑇 ) ∈ LVec ) |
148 |
147
|
lvecgrpd |
⊢ ( 𝜑 → ( 𝑃 ↾s 𝑇 ) ∈ Grp ) |
149 |
10
|
issubg |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝑃 ) ↔ ( 𝑃 ∈ Grp ∧ 𝑇 ⊆ 𝑈 ∧ ( 𝑃 ↾s 𝑇 ) ∈ Grp ) ) |
150 |
142 110 148 149
|
syl3anbrc |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝑃 ) ) |
151 |
150
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑇 ∈ ( SubGrp ‘ 𝑃 ) ) |
152 |
131
|
subgcl |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑃 ) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝑇 ) |
153 |
151 118 120 152
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝑇 ) |
154 |
142
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑃 ∈ Grp ) |
155 |
10 131 154 119 121
|
grpcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝑈 ) |
156 |
1 2 3 4 134 135 136 8 9 10 11 12 13 14 15 16 17 18 155
|
algextdeglem7 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝑇 ↔ ( 𝐻 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ) |
157 |
153 156
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝐻 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) |
158 |
133 141 157
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 ( +g ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) |
159 |
|
fvex |
⊢ ( deg1 ‘ 𝐾 ) ∈ V |
160 |
|
cnvexg |
⊢ ( ( deg1 ‘ 𝐾 ) ∈ V → ◡ ( deg1 ‘ 𝐾 ) ∈ V ) |
161 |
|
imaexg |
⊢ ( ◡ ( deg1 ‘ 𝐾 ) ∈ V → ( ◡ ( deg1 ‘ 𝐾 ) “ ( -∞ [,) ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) ∈ V ) |
162 |
159 160 161
|
mp2b |
⊢ ( ◡ ( deg1 ‘ 𝐾 ) “ ( -∞ [,) ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) ∈ V |
163 |
18 162
|
eqeltri |
⊢ 𝑇 ∈ V |
164 |
111 131
|
ressplusg |
⊢ ( 𝑇 ∈ V → ( +g ‘ 𝑃 ) = ( +g ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
165 |
163 164
|
ax-mp |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ ( 𝑃 ↾s 𝑇 ) ) |
166 |
165
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑃 ↾s 𝑇 ) ) 𝑦 ) |
167 |
158 166
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 ( +g ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑃 ↾s 𝑇 ) ) 𝑦 ) ) |
168 |
167
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( +g ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑃 ↾s 𝑇 ) ) 𝑦 ) ) |
169 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑦 ∈ 𝑇 ) |
170 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐸 ∈ Field ) |
171 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
172 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
173 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑇 ⊆ 𝑈 ) |
174 |
173 169
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑦 ∈ 𝑈 ) |
175 |
1 2 3 4 170 171 172 8 9 10 11 12 13 14 15 16 17 18 174
|
algextdeglem7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑦 ∈ 𝑇 ↔ ( 𝐻 ‘ 𝑦 ) = 𝑦 ) ) |
176 |
169 175
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝐻 ‘ 𝑦 ) = 𝑦 ) |
177 |
176
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) ( 𝐻 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) ) |
178 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑥 ∈ 𝐹 ) |
179 |
41
|
sdrgss |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
180 |
1 41
|
ressbas2 |
⊢ ( 𝐹 ⊆ ( Base ‘ 𝐸 ) → 𝐹 = ( Base ‘ 𝐾 ) ) |
181 |
6 179 180
|
3syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐾 ) ) |
182 |
9
|
ply1sca |
⊢ ( 𝐾 ∈ Ring → 𝐾 = ( Scalar ‘ 𝑃 ) ) |
183 |
23 182
|
syl |
⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝑃 ) ) |
184 |
183
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
185 |
181 184
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
186 |
185
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐹 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
187 |
178 186
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
188 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐻 : 𝑈 –onto→ ( Base ‘ ( 𝐻 “s 𝑃 ) ) ) |
189 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐻 ∈ ( 𝑃 LMHom ( 𝐻 “s 𝑃 ) ) ) |
190 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
191 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) = ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) |
192 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
193 |
115 10 116 187 174 188 189 190 191 192
|
lmhmimasvsca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) ( 𝐻 ‘ 𝑦 ) ) = ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) ) |
194 |
177 193
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) = ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) ) |
195 |
71 17
|
fmptd |
⊢ ( 𝜑 → 𝐻 : 𝑈 ⟶ 𝑇 ) |
196 |
195
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐻 : 𝑈 ⟶ 𝑇 ) |
197 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
198 |
143
|
lveclmodd |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
199 |
198
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑃 ∈ LMod ) |
200 |
10 197 190 192 199 187 174
|
lmodvscld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ∈ 𝑈 ) |
201 |
196 200
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) ∈ 𝑇 ) |
202 |
194 201
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) ∈ 𝑇 ) |
203 |
144
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑇 ∈ ( LSubSp ‘ 𝑃 ) ) |
204 |
197 190 192 145
|
lssvscl |
⊢ ( ( ( 𝑃 ∈ LMod ∧ 𝑇 ∈ ( LSubSp ‘ 𝑃 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ∈ 𝑇 ) |
205 |
199 203 187 169 204
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ∈ 𝑇 ) |
206 |
1 2 3 4 170 171 172 8 9 10 11 12 13 14 15 16 17 18 200
|
algextdeglem7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ∈ 𝑇 ↔ ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) ) |
207 |
205 206
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) |
208 |
111 190
|
ressvsca |
⊢ ( 𝑇 ∈ V → ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
209 |
163 208
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
210 |
209
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( 𝑃 ↾s 𝑇 ) ) 𝑦 ) ) |
211 |
194 207 210
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( 𝑃 ↾s 𝑇 ) ) 𝑦 ) ) |
212 |
|
eqid |
⊢ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) = ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) |
213 |
111 197
|
resssca |
⊢ ( 𝑇 ∈ V → ( Scalar ‘ 𝑃 ) = ( Scalar ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
214 |
163 213
|
ax-mp |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ ( 𝑃 ↾s 𝑇 ) ) |
215 |
19 20 105 107 197
|
imassca |
⊢ ( 𝜑 → ( Scalar ‘ 𝑃 ) = ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) |
216 |
183 215
|
eqtrd |
⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) |
217 |
216
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) ) |
218 |
181 217
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) ) |
219 |
215
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ ( Scalar ‘ 𝑃 ) ) = ( +g ‘ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) ) |
220 |
219
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) 𝑦 ) ) |
221 |
220
|
eqcomd |
⊢ ( 𝜑 → ( 𝑥 ( +g ‘ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑦 ) ) |
222 |
221
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝑥 ( +g ‘ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑦 ) ) |
223 |
|
lmhmlvec2 |
⊢ ( ( 𝑃 ∈ LVec ∧ 𝐻 ∈ ( 𝑃 LMHom ( 𝐻 “s 𝑃 ) ) ) → ( 𝐻 “s 𝑃 ) ∈ LVec ) |
224 |
143 126 223
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 “s 𝑃 ) ∈ LVec ) |
225 |
108 113 114 168 202 211 212 214 218 185 222 224 147
|
dimpropd |
⊢ ( 𝜑 → ( dim ‘ ( 𝐻 “s 𝑃 ) ) = ( dim ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
226 |
9 36 18 68 22 111
|
ply1degltdim |
⊢ ( 𝜑 → ( dim ‘ ( 𝑃 ↾s 𝑇 ) ) = ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
227 |
225 226
|
eqtrd |
⊢ ( 𝜑 → ( dim ‘ ( 𝐻 “s 𝑃 ) ) = ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) |