| Step |
Hyp |
Ref |
Expression |
| 1 |
|
algextdeg.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝐹 ) |
| 2 |
|
algextdeg.l |
⊢ 𝐿 = ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
| 3 |
|
algextdeg.d |
⊢ 𝐷 = ( deg1 ‘ 𝐸 ) |
| 4 |
|
algextdeg.m |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
| 5 |
|
algextdeg.f |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 6 |
|
algextdeg.e |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 7 |
|
algextdeg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 8 |
|
algextdeglem.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
| 9 |
|
algextdeglem.y |
⊢ 𝑃 = ( Poly1 ‘ 𝐾 ) |
| 10 |
|
algextdeglem.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 11 |
|
algextdeglem.g |
⊢ 𝐺 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
| 12 |
|
algextdeglem.n |
⊢ 𝑁 = ( 𝑥 ∈ 𝑈 ↦ [ 𝑥 ] ( 𝑃 ~QG 𝑍 ) ) |
| 13 |
|
algextdeglem.z |
⊢ 𝑍 = ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) |
| 14 |
|
algextdeglem.q |
⊢ 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) ) |
| 15 |
|
algextdeglem.j |
⊢ 𝐽 = ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐺 “ 𝑝 ) ) |
| 16 |
|
algextdeglem.r |
⊢ 𝑅 = ( rem1p ‘ 𝐾 ) |
| 17 |
|
algextdeglem.h |
⊢ 𝐻 = ( 𝑝 ∈ 𝑈 ↦ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
| 18 |
|
algextdeglem.t |
⊢ 𝑇 = ( ◡ ( deg1 ‘ 𝐾 ) “ ( -∞ [,) ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 19 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐻 “s 𝑃 ) = ( 𝐻 “s 𝑃 ) ) |
| 20 |
10
|
a1i |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑃 ) ) |
| 21 |
1
|
sdrgdrng |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐾 ∈ DivRing ) |
| 22 |
6 21
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
| 23 |
22
|
drngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝐾 ∈ Ring ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑝 ∈ 𝑈 ) |
| 26 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) |
| 27 |
1
|
fveq2i |
⊢ ( Monic1p ‘ 𝐾 ) = ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 28 |
26 5 6 4 7 27
|
minplym1p |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Monic1p ‘ 𝐾 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Monic1p ‘ 𝐾 ) ) |
| 30 |
|
eqid |
⊢ ( Unic1p ‘ 𝐾 ) = ( Unic1p ‘ 𝐾 ) |
| 31 |
|
eqid |
⊢ ( Monic1p ‘ 𝐾 ) = ( Monic1p ‘ 𝐾 ) |
| 32 |
30 31
|
mon1puc1p |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Monic1p ‘ 𝐾 ) ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) |
| 33 |
24 29 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) |
| 34 |
16 9 10 30
|
r1pcl |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝑝 ∈ 𝑈 ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) → ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑈 ) |
| 35 |
24 25 33 34
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑈 ) |
| 36 |
|
eqid |
⊢ ( deg1 ‘ 𝐾 ) = ( deg1 ‘ 𝐾 ) |
| 37 |
16 9 10 30 36
|
r1pdeglt |
⊢ ( ( 𝐾 ∈ Ring ∧ 𝑝 ∈ 𝑈 ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 38 |
24 25 33 37
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 39 |
1
|
fveq2i |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 40 |
9 39
|
eqtri |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 41 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 42 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
| 43 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 44 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 45 |
6 44
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 46 |
8 1 41 42 43 45
|
irngssv |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
| 47 |
46 7
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐸 ) ) |
| 48 |
|
eqid |
⊢ { 𝑝 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = { 𝑝 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } |
| 49 |
|
eqid |
⊢ ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 ) |
| 50 |
|
eqid |
⊢ ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 51 |
8 40 41 5 6 47 42 48 49 50 4
|
minplycl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) |
| 52 |
51 10
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ 𝑈 ) |
| 53 |
1 3 9 10 52 45
|
ressdeg1 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 55 |
38 54
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) < ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 56 |
5
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
| 57 |
56
|
drngringd |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
| 58 |
|
eqid |
⊢ ( Poly1 ‘ 𝐸 ) = ( Poly1 ‘ 𝐸 ) |
| 59 |
|
eqid |
⊢ ( PwSer1 ‘ 𝐾 ) = ( PwSer1 ‘ 𝐾 ) |
| 60 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) = ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) |
| 61 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) = ( Base ‘ ( Poly1 ‘ 𝐸 ) ) |
| 62 |
58 1 9 10 45 59 60 61
|
ressply1bas2 |
⊢ ( 𝜑 → 𝑈 = ( ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) ) |
| 63 |
|
inss2 |
⊢ ( ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) |
| 64 |
62 63
|
eqsstrdi |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) |
| 65 |
64 52
|
sseldd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) |
| 66 |
26 5 6 4 7
|
irngnminplynz |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) ) |
| 67 |
3 58 26 61
|
deg1nn0cl |
⊢ ( ( 𝐸 ∈ Ring ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ∧ ( 𝑀 ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) ) → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 68 |
57 65 66 67
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 69 |
9 36 18 68 23 10
|
ply1degleel |
⊢ ( 𝜑 → ( ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑇 ↔ ( ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑈 ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) < ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑇 ↔ ( ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑈 ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) < ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 71 |
35 55 70
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑇 ) |
| 72 |
71
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑇 ) |
| 73 |
|
oveq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) = ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
| 74 |
73
|
eqeq2d |
⊢ ( 𝑝 = 𝑞 → ( 𝑞 = ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ↔ 𝑞 = ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 75 |
|
eqcom |
⊢ ( 𝑞 = ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) ↔ ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) = 𝑞 ) |
| 76 |
74 75
|
bitrdi |
⊢ ( 𝑝 = 𝑞 → ( 𝑞 = ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ↔ ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) = 𝑞 ) ) |
| 77 |
9 36 18 68 23 10
|
ply1degltel |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝑇 ↔ ( 𝑞 ∈ 𝑈 ∧ ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ≤ ( ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) ) ) |
| 78 |
77
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → 𝑞 ∈ 𝑈 ) |
| 79 |
77
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ≤ ( ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) |
| 80 |
53
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) = ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) = ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) |
| 82 |
79 81
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ≤ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) |
| 83 |
36 9 10
|
deg1cl |
⊢ ( 𝑞 ∈ 𝑈 → ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 84 |
78 83
|
syl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ∈ ( ℕ0 ∪ { -∞ } ) ) |
| 85 |
68
|
nn0zd |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℤ ) |
| 86 |
53 85
|
eqeltrrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℤ ) |
| 87 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℤ ) |
| 88 |
|
degltlem1 |
⊢ ( ( ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ∈ ( ℕ0 ∪ { -∞ } ) ∧ ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℤ ) → ( ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ≤ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) ) |
| 89 |
84 87 88
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) ≤ ( ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) − 1 ) ) ) |
| 90 |
82 89
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 91 |
|
fldsdrgfld |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 92 |
5 6 91
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 93 |
1 92
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 94 |
|
fldidom |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ IDomn ) |
| 95 |
93 94
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ IDomn ) |
| 96 |
95
|
idomdomd |
⊢ ( 𝜑 → 𝐾 ∈ Domn ) |
| 97 |
96
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → 𝐾 ∈ Domn ) |
| 98 |
23 28 32
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) |
| 99 |
98
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) |
| 100 |
9 10 30 16 36 97 78 99
|
r1pid2 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) = 𝑞 ↔ ( ( deg1 ‘ 𝐾 ) ‘ 𝑞 ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 101 |
90 100
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ( 𝑞 𝑅 ( 𝑀 ‘ 𝐴 ) ) = 𝑞 ) |
| 102 |
76 78 101
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝑇 ) → ∃ 𝑝 ∈ 𝑈 𝑞 = ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
| 103 |
102
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑞 ∈ 𝑇 ∃ 𝑝 ∈ 𝑈 𝑞 = ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
| 104 |
17
|
fompt |
⊢ ( 𝐻 : 𝑈 –onto→ 𝑇 ↔ ( ∀ 𝑝 ∈ 𝑈 ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ 𝑇 ∧ ∀ 𝑞 ∈ 𝑇 ∃ 𝑝 ∈ 𝑈 𝑞 = ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 105 |
72 103 104
|
sylanbrc |
⊢ ( 𝜑 → 𝐻 : 𝑈 –onto→ 𝑇 ) |
| 106 |
9
|
ply1ring |
⊢ ( 𝐾 ∈ Ring → 𝑃 ∈ Ring ) |
| 107 |
23 106
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 108 |
19 20 105 107
|
imasbas |
⊢ ( 𝜑 → 𝑇 = ( Base ‘ ( 𝐻 “s 𝑃 ) ) ) |
| 109 |
78
|
ex |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝑇 → 𝑞 ∈ 𝑈 ) ) |
| 110 |
109
|
ssrdv |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑈 ) |
| 111 |
|
eqid |
⊢ ( 𝑃 ↾s 𝑇 ) = ( 𝑃 ↾s 𝑇 ) |
| 112 |
111 10
|
ressbas2 |
⊢ ( 𝑇 ⊆ 𝑈 → 𝑇 = ( Base ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
| 113 |
110 112
|
syl |
⊢ ( 𝜑 → 𝑇 = ( Base ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
| 114 |
|
ssidd |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑇 ) |
| 115 |
|
eqid |
⊢ ( 𝐻 “s 𝑃 ) = ( 𝐻 “s 𝑃 ) |
| 116 |
|
eqid |
⊢ ( Base ‘ ( 𝐻 “s 𝑃 ) ) = ( Base ‘ ( 𝐻 “s 𝑃 ) ) |
| 117 |
110
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑇 ⊆ 𝑈 ) |
| 118 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑥 ∈ 𝑇 ) |
| 119 |
117 118
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑥 ∈ 𝑈 ) |
| 120 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑇 ) |
| 121 |
117 120
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑈 ) |
| 122 |
|
foeq3 |
⊢ ( 𝑇 = ( Base ‘ ( 𝐻 “s 𝑃 ) ) → ( 𝐻 : 𝑈 –onto→ 𝑇 ↔ 𝐻 : 𝑈 –onto→ ( Base ‘ ( 𝐻 “s 𝑃 ) ) ) ) |
| 123 |
108 122
|
syl |
⊢ ( 𝜑 → ( 𝐻 : 𝑈 –onto→ 𝑇 ↔ 𝐻 : 𝑈 –onto→ ( Base ‘ ( 𝐻 “s 𝑃 ) ) ) ) |
| 124 |
105 123
|
mpbid |
⊢ ( 𝜑 → 𝐻 : 𝑈 –onto→ ( Base ‘ ( 𝐻 “s 𝑃 ) ) ) |
| 125 |
124
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝐻 : 𝑈 –onto→ ( Base ‘ ( 𝐻 “s 𝑃 ) ) ) |
| 126 |
9 10 16 30 17 23 98
|
r1plmhm |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑃 LMHom ( 𝐻 “s 𝑃 ) ) ) |
| 127 |
126
|
lmhmghmd |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑃 GrpHom ( 𝐻 “s 𝑃 ) ) ) |
| 128 |
|
ghmmhm |
⊢ ( 𝐻 ∈ ( 𝑃 GrpHom ( 𝐻 “s 𝑃 ) ) → 𝐻 ∈ ( 𝑃 MndHom ( 𝐻 “s 𝑃 ) ) ) |
| 129 |
127 128
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑃 MndHom ( 𝐻 “s 𝑃 ) ) ) |
| 130 |
129
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝐻 ∈ ( 𝑃 MndHom ( 𝐻 “s 𝑃 ) ) ) |
| 131 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 132 |
|
eqid |
⊢ ( +g ‘ ( 𝐻 “s 𝑃 ) ) = ( +g ‘ ( 𝐻 “s 𝑃 ) ) |
| 133 |
115 10 116 119 121 125 130 131 132
|
mhmimasplusg |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( ( 𝐻 ‘ 𝑥 ) ( +g ‘ ( 𝐻 “s 𝑃 ) ) ( 𝐻 ‘ 𝑦 ) ) = ( 𝐻 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ) |
| 134 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝐸 ∈ Field ) |
| 135 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 136 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 137 |
1 2 3 4 134 135 136 8 9 10 11 12 13 14 15 16 17 18 119
|
algextdeglem7 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 ∈ 𝑇 ↔ ( 𝐻 ‘ 𝑥 ) = 𝑥 ) ) |
| 138 |
118 137
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑥 ) = 𝑥 ) |
| 139 |
1 2 3 4 134 135 136 8 9 10 11 12 13 14 15 16 17 18 121
|
algextdeglem7 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑦 ∈ 𝑇 ↔ ( 𝐻 ‘ 𝑦 ) = 𝑦 ) ) |
| 140 |
120 139
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝐻 ‘ 𝑦 ) = 𝑦 ) |
| 141 |
138 140
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( ( 𝐻 ‘ 𝑥 ) ( +g ‘ ( 𝐻 “s 𝑃 ) ) ( 𝐻 ‘ 𝑦 ) ) = ( 𝑥 ( +g ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) ) |
| 142 |
107
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 143 |
9 22
|
ply1lvec |
⊢ ( 𝜑 → 𝑃 ∈ LVec ) |
| 144 |
9 36 18 68 23
|
ply1degltlss |
⊢ ( 𝜑 → 𝑇 ∈ ( LSubSp ‘ 𝑃 ) ) |
| 145 |
|
eqid |
⊢ ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 ) |
| 146 |
111 145
|
lsslvec |
⊢ ( ( 𝑃 ∈ LVec ∧ 𝑇 ∈ ( LSubSp ‘ 𝑃 ) ) → ( 𝑃 ↾s 𝑇 ) ∈ LVec ) |
| 147 |
143 144 146
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ↾s 𝑇 ) ∈ LVec ) |
| 148 |
147
|
lvecgrpd |
⊢ ( 𝜑 → ( 𝑃 ↾s 𝑇 ) ∈ Grp ) |
| 149 |
10
|
issubg |
⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝑃 ) ↔ ( 𝑃 ∈ Grp ∧ 𝑇 ⊆ 𝑈 ∧ ( 𝑃 ↾s 𝑇 ) ∈ Grp ) ) |
| 150 |
142 110 148 149
|
syl3anbrc |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝑃 ) ) |
| 151 |
150
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑇 ∈ ( SubGrp ‘ 𝑃 ) ) |
| 152 |
131
|
subgcl |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑃 ) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝑇 ) |
| 153 |
151 118 120 152
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝑇 ) |
| 154 |
142
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → 𝑃 ∈ Grp ) |
| 155 |
10 131 154 119 121
|
grpcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝑈 ) |
| 156 |
1 2 3 4 134 135 136 8 9 10 11 12 13 14 15 16 17 18 155
|
algextdeglem7 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝑇 ↔ ( 𝐻 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ) |
| 157 |
153 156
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝐻 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) |
| 158 |
133 141 157
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 ( +g ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) |
| 159 |
|
fvex |
⊢ ( deg1 ‘ 𝐾 ) ∈ V |
| 160 |
|
cnvexg |
⊢ ( ( deg1 ‘ 𝐾 ) ∈ V → ◡ ( deg1 ‘ 𝐾 ) ∈ V ) |
| 161 |
|
imaexg |
⊢ ( ◡ ( deg1 ‘ 𝐾 ) ∈ V → ( ◡ ( deg1 ‘ 𝐾 ) “ ( -∞ [,) ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) ∈ V ) |
| 162 |
159 160 161
|
mp2b |
⊢ ( ◡ ( deg1 ‘ 𝐾 ) “ ( -∞ [,) ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) ∈ V |
| 163 |
18 162
|
eqeltri |
⊢ 𝑇 ∈ V |
| 164 |
111 131
|
ressplusg |
⊢ ( 𝑇 ∈ V → ( +g ‘ 𝑃 ) = ( +g ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
| 165 |
163 164
|
ax-mp |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ ( 𝑃 ↾s 𝑇 ) ) |
| 166 |
165
|
oveqi |
⊢ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑃 ↾s 𝑇 ) ) 𝑦 ) |
| 167 |
158 166
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) ∧ 𝑦 ∈ 𝑇 ) → ( 𝑥 ( +g ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑃 ↾s 𝑇 ) ) 𝑦 ) ) |
| 168 |
167
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( +g ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑃 ↾s 𝑇 ) ) 𝑦 ) ) |
| 169 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑦 ∈ 𝑇 ) |
| 170 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐸 ∈ Field ) |
| 171 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 172 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 173 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑇 ⊆ 𝑈 ) |
| 174 |
173 169
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑦 ∈ 𝑈 ) |
| 175 |
1 2 3 4 170 171 172 8 9 10 11 12 13 14 15 16 17 18 174
|
algextdeglem7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑦 ∈ 𝑇 ↔ ( 𝐻 ‘ 𝑦 ) = 𝑦 ) ) |
| 176 |
169 175
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝐻 ‘ 𝑦 ) = 𝑦 ) |
| 177 |
176
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) ( 𝐻 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) ) |
| 178 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑥 ∈ 𝐹 ) |
| 179 |
41
|
sdrgss |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
| 180 |
1 41
|
ressbas2 |
⊢ ( 𝐹 ⊆ ( Base ‘ 𝐸 ) → 𝐹 = ( Base ‘ 𝐾 ) ) |
| 181 |
6 179 180
|
3syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐾 ) ) |
| 182 |
9
|
ply1sca |
⊢ ( 𝐾 ∈ Ring → 𝐾 = ( Scalar ‘ 𝑃 ) ) |
| 183 |
23 182
|
syl |
⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝑃 ) ) |
| 184 |
183
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 185 |
181 184
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 186 |
185
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐹 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 187 |
178 186
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 188 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐻 : 𝑈 –onto→ ( Base ‘ ( 𝐻 “s 𝑃 ) ) ) |
| 189 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐻 ∈ ( 𝑃 LMHom ( 𝐻 “s 𝑃 ) ) ) |
| 190 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) |
| 191 |
|
eqid |
⊢ ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) = ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) |
| 192 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 193 |
115 10 116 187 174 188 189 190 191 192
|
lmhmimasvsca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) ( 𝐻 ‘ 𝑦 ) ) = ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) ) |
| 194 |
177 193
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) = ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) ) |
| 195 |
71 17
|
fmptd |
⊢ ( 𝜑 → 𝐻 : 𝑈 ⟶ 𝑇 ) |
| 196 |
195
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝐻 : 𝑈 ⟶ 𝑇 ) |
| 197 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 198 |
143
|
lveclmodd |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 199 |
198
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑃 ∈ LMod ) |
| 200 |
10 197 190 192 199 187 174
|
lmodvscld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ∈ 𝑈 ) |
| 201 |
196 200
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) ∈ 𝑇 ) |
| 202 |
194 201
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) ∈ 𝑇 ) |
| 203 |
144
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → 𝑇 ∈ ( LSubSp ‘ 𝑃 ) ) |
| 204 |
197 190 192 145
|
lssvscl |
⊢ ( ( ( 𝑃 ∈ LMod ∧ 𝑇 ∈ ( LSubSp ‘ 𝑃 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ∈ 𝑇 ) |
| 205 |
199 203 187 169 204
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ∈ 𝑇 ) |
| 206 |
1 2 3 4 170 171 172 8 9 10 11 12 13 14 15 16 17 18 200
|
algextdeglem7 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ∈ 𝑇 ↔ ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) ) |
| 207 |
205 206
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝐻 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) ) |
| 208 |
111 190
|
ressvsca |
⊢ ( 𝑇 ∈ V → ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
| 209 |
163 208
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
| 210 |
209
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( 𝑃 ↾s 𝑇 ) ) 𝑦 ) ) |
| 211 |
194 207 210
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝑇 ) ) → ( 𝑥 ( ·𝑠 ‘ ( 𝐻 “s 𝑃 ) ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ ( 𝑃 ↾s 𝑇 ) ) 𝑦 ) ) |
| 212 |
|
eqid |
⊢ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) = ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) |
| 213 |
111 197
|
resssca |
⊢ ( 𝑇 ∈ V → ( Scalar ‘ 𝑃 ) = ( Scalar ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
| 214 |
163 213
|
ax-mp |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ ( 𝑃 ↾s 𝑇 ) ) |
| 215 |
19 20 105 107 197
|
imassca |
⊢ ( 𝜑 → ( Scalar ‘ 𝑃 ) = ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) |
| 216 |
183 215
|
eqtrd |
⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) |
| 217 |
216
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) ) |
| 218 |
181 217
|
eqtrd |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) ) |
| 219 |
215
|
fveq2d |
⊢ ( 𝜑 → ( +g ‘ ( Scalar ‘ 𝑃 ) ) = ( +g ‘ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) ) |
| 220 |
219
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) 𝑦 ) ) |
| 221 |
220
|
eqcomd |
⊢ ( 𝜑 → ( 𝑥 ( +g ‘ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑦 ) ) |
| 222 |
221
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ( 𝑥 ( +g ‘ ( Scalar ‘ ( 𝐻 “s 𝑃 ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( Scalar ‘ 𝑃 ) ) 𝑦 ) ) |
| 223 |
|
lmhmlvec2 |
⊢ ( ( 𝑃 ∈ LVec ∧ 𝐻 ∈ ( 𝑃 LMHom ( 𝐻 “s 𝑃 ) ) ) → ( 𝐻 “s 𝑃 ) ∈ LVec ) |
| 224 |
143 126 223
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 “s 𝑃 ) ∈ LVec ) |
| 225 |
108 113 114 168 202 211 212 214 218 185 222 224 147
|
dimpropd |
⊢ ( 𝜑 → ( dim ‘ ( 𝐻 “s 𝑃 ) ) = ( dim ‘ ( 𝑃 ↾s 𝑇 ) ) ) |
| 226 |
9 36 18 68 22 111
|
ply1degltdim |
⊢ ( 𝜑 → ( dim ‘ ( 𝑃 ↾s 𝑇 ) ) = ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 227 |
225 226
|
eqtrd |
⊢ ( 𝜑 → ( dim ‘ ( 𝐻 “s 𝑃 ) ) = ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) |