Metamath Proof Explorer


Theorem mon1puc1p

Description: Monic polynomials are unitic. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses mon1puc1p.c 𝐶 = ( Unic1p𝑅 )
mon1puc1p.m 𝑀 = ( Monic1p𝑅 )
Assertion mon1puc1p ( ( 𝑅 ∈ Ring ∧ 𝑋𝑀 ) → 𝑋𝐶 )

Proof

Step Hyp Ref Expression
1 mon1puc1p.c 𝐶 = ( Unic1p𝑅 )
2 mon1puc1p.m 𝑀 = ( Monic1p𝑅 )
3 eqid ( Poly1𝑅 ) = ( Poly1𝑅 )
4 eqid ( Base ‘ ( Poly1𝑅 ) ) = ( Base ‘ ( Poly1𝑅 ) )
5 3 4 2 mon1pcl ( 𝑋𝑀𝑋 ∈ ( Base ‘ ( Poly1𝑅 ) ) )
6 5 adantl ( ( 𝑅 ∈ Ring ∧ 𝑋𝑀 ) → 𝑋 ∈ ( Base ‘ ( Poly1𝑅 ) ) )
7 eqid ( 0g ‘ ( Poly1𝑅 ) ) = ( 0g ‘ ( Poly1𝑅 ) )
8 3 7 2 mon1pn0 ( 𝑋𝑀𝑋 ≠ ( 0g ‘ ( Poly1𝑅 ) ) )
9 8 adantl ( ( 𝑅 ∈ Ring ∧ 𝑋𝑀 ) → 𝑋 ≠ ( 0g ‘ ( Poly1𝑅 ) ) )
10 eqid ( deg1𝑅 ) = ( deg1𝑅 )
11 eqid ( 1r𝑅 ) = ( 1r𝑅 )
12 10 11 2 mon1pldg ( 𝑋𝑀 → ( ( coe1𝑋 ) ‘ ( ( deg1𝑅 ) ‘ 𝑋 ) ) = ( 1r𝑅 ) )
13 12 adantl ( ( 𝑅 ∈ Ring ∧ 𝑋𝑀 ) → ( ( coe1𝑋 ) ‘ ( ( deg1𝑅 ) ‘ 𝑋 ) ) = ( 1r𝑅 ) )
14 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
15 14 11 1unit ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ ( Unit ‘ 𝑅 ) )
16 15 adantr ( ( 𝑅 ∈ Ring ∧ 𝑋𝑀 ) → ( 1r𝑅 ) ∈ ( Unit ‘ 𝑅 ) )
17 13 16 eqeltrd ( ( 𝑅 ∈ Ring ∧ 𝑋𝑀 ) → ( ( coe1𝑋 ) ‘ ( ( deg1𝑅 ) ‘ 𝑋 ) ) ∈ ( Unit ‘ 𝑅 ) )
18 3 4 7 10 1 14 isuc1p ( 𝑋𝐶 ↔ ( 𝑋 ∈ ( Base ‘ ( Poly1𝑅 ) ) ∧ 𝑋 ≠ ( 0g ‘ ( Poly1𝑅 ) ) ∧ ( ( coe1𝑋 ) ‘ ( ( deg1𝑅 ) ‘ 𝑋 ) ) ∈ ( Unit ‘ 𝑅 ) ) )
19 6 9 17 18 syl3anbrc ( ( 𝑅 ∈ Ring ∧ 𝑋𝑀 ) → 𝑋𝐶 )