Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → 𝑈 ∈ LMod ) |
2 |
1
|
adantl |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝑈 ∈ LMod ) |
3 |
|
eqid |
⊢ ( Scalar ‘ 𝑉 ) = ( Scalar ‘ 𝑉 ) |
4 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
5 |
3 4
|
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑉 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑉 ) ) |
7 |
3
|
lvecdrng |
⊢ ( 𝑉 ∈ LVec → ( Scalar ‘ 𝑉 ) ∈ DivRing ) |
8 |
7
|
adantr |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ( Scalar ‘ 𝑉 ) ∈ DivRing ) |
9 |
6 8
|
eqeltrd |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ( Scalar ‘ 𝑈 ) ∈ DivRing ) |
10 |
4
|
islvec |
⊢ ( 𝑈 ∈ LVec ↔ ( 𝑈 ∈ LMod ∧ ( Scalar ‘ 𝑈 ) ∈ DivRing ) ) |
11 |
2 9 10
|
sylanbrc |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝑈 ∈ LVec ) |