Description: The kernel of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | kerlmhm.1 | ⊢ 0 = ( 0g ‘ 𝑈 ) | |
| kerlmhm.k | ⊢ 𝐾 = ( 𝑉 ↾s ( ◡ 𝐹 “ { 0 } ) ) | ||
| Assertion | kerlmhm | ⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐾 ∈ LVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kerlmhm.1 | ⊢ 0 = ( 0g ‘ 𝑈 ) | |
| 2 | kerlmhm.k | ⊢ 𝐾 = ( 𝑉 ↾s ( ◡ 𝐹 “ { 0 } ) ) | |
| 3 | eqid | ⊢ ( ◡ 𝐹 “ { 0 } ) = ( ◡ 𝐹 “ { 0 } ) | |
| 4 | eqid | ⊢ ( LSubSp ‘ 𝑉 ) = ( LSubSp ‘ 𝑉 ) | |
| 5 | 3 1 4 | lmhmkerlss | ⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ) |
| 6 | 2 4 | lsslvec | ⊢ ( ( 𝑉 ∈ LVec ∧ ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ) → 𝐾 ∈ LVec ) |
| 7 | 5 6 | sylan2 | ⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐾 ∈ LVec ) |