Description: The kernel of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | kerlmhm.1 | ⊢ 0 = ( 0g ‘ 𝑈 ) | |
kerlmhm.k | ⊢ 𝐾 = ( 𝑉 ↾s ( ◡ 𝐹 “ { 0 } ) ) | ||
Assertion | kerlmhm | ⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐾 ∈ LVec ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kerlmhm.1 | ⊢ 0 = ( 0g ‘ 𝑈 ) | |
2 | kerlmhm.k | ⊢ 𝐾 = ( 𝑉 ↾s ( ◡ 𝐹 “ { 0 } ) ) | |
3 | eqid | ⊢ ( ◡ 𝐹 “ { 0 } ) = ( ◡ 𝐹 “ { 0 } ) | |
4 | eqid | ⊢ ( LSubSp ‘ 𝑉 ) = ( LSubSp ‘ 𝑉 ) | |
5 | 3 1 4 | lmhmkerlss | ⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ) |
6 | 2 4 | lsslvec | ⊢ ( ( 𝑉 ∈ LVec ∧ ( ◡ 𝐹 “ { 0 } ) ∈ ( LSubSp ‘ 𝑉 ) ) → 𝐾 ∈ LVec ) |
7 | 5 6 | sylan2 | ⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐾 ∈ LVec ) |