Metamath Proof Explorer


Theorem kerlmhm

Description: The kernel of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023)

Ref Expression
Hypotheses kerlmhm.1 0˙=0U
kerlmhm.k K=V𝑠F-10˙
Assertion kerlmhm VLVecFVLMHomUKLVec

Proof

Step Hyp Ref Expression
1 kerlmhm.1 0˙=0U
2 kerlmhm.k K=V𝑠F-10˙
3 eqid F-10˙=F-10˙
4 eqid LSubSpV=LSubSpV
5 3 1 4 lmhmkerlss FVLMHomUF-10˙LSubSpV
6 2 4 lsslvec VLVecF-10˙LSubSpVKLVec
7 5 6 sylan2 VLVecFVLMHomUKLVec