Metamath Proof Explorer


Theorem kerlmhm

Description: The kernel of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023)

Ref Expression
Hypotheses kerlmhm.1
|- .0. = ( 0g ` U )
kerlmhm.k
|- K = ( V |`s ( `' F " { .0. } ) )
Assertion kerlmhm
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> K e. LVec )

Proof

Step Hyp Ref Expression
1 kerlmhm.1
 |-  .0. = ( 0g ` U )
2 kerlmhm.k
 |-  K = ( V |`s ( `' F " { .0. } ) )
3 eqid
 |-  ( `' F " { .0. } ) = ( `' F " { .0. } )
4 eqid
 |-  ( LSubSp ` V ) = ( LSubSp ` V )
5 3 1 4 lmhmkerlss
 |-  ( F e. ( V LMHom U ) -> ( `' F " { .0. } ) e. ( LSubSp ` V ) )
6 2 4 lsslvec
 |-  ( ( V e. LVec /\ ( `' F " { .0. } ) e. ( LSubSp ` V ) ) -> K e. LVec )
7 5 6 sylan2
 |-  ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> K e. LVec )