Description: The kernel of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | kerlmhm.1 | |- .0. = ( 0g ` U ) |
|
kerlmhm.k | |- K = ( V |`s ( `' F " { .0. } ) ) |
||
Assertion | kerlmhm | |- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> K e. LVec ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kerlmhm.1 | |- .0. = ( 0g ` U ) |
|
2 | kerlmhm.k | |- K = ( V |`s ( `' F " { .0. } ) ) |
|
3 | eqid | |- ( `' F " { .0. } ) = ( `' F " { .0. } ) |
|
4 | eqid | |- ( LSubSp ` V ) = ( LSubSp ` V ) |
|
5 | 3 1 4 | lmhmkerlss | |- ( F e. ( V LMHom U ) -> ( `' F " { .0. } ) e. ( LSubSp ` V ) ) |
6 | 2 4 | lsslvec | |- ( ( V e. LVec /\ ( `' F " { .0. } ) e. ( LSubSp ` V ) ) -> K e. LVec ) |
7 | 5 6 | sylan2 | |- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> K e. LVec ) |