Description: The image of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imlmhm.i | |- I = ( U |`s ran F ) |
|
| Assertion | imlmhm | |- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> I e. LVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imlmhm.i | |- I = ( U |`s ran F ) |
|
| 2 | lmhmlvec2 | |- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> U e. LVec ) |
|
| 3 | lmhmrnlss | |- ( F e. ( V LMHom U ) -> ran F e. ( LSubSp ` U ) ) |
|
| 4 | 3 | adantl | |- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> ran F e. ( LSubSp ` U ) ) |
| 5 | eqid | |- ( LSubSp ` U ) = ( LSubSp ` U ) |
|
| 6 | 1 5 | lsslvec | |- ( ( U e. LVec /\ ran F e. ( LSubSp ` U ) ) -> I e. LVec ) |
| 7 | 2 4 6 | syl2anc | |- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> I e. LVec ) |