Metamath Proof Explorer


Theorem imlmhm

Description: The image of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023)

Ref Expression
Hypothesis imlmhm.i
|- I = ( U |`s ran F )
Assertion imlmhm
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> I e. LVec )

Proof

Step Hyp Ref Expression
1 imlmhm.i
 |-  I = ( U |`s ran F )
2 lmhmlvec2
 |-  ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> U e. LVec )
3 lmhmrnlss
 |-  ( F e. ( V LMHom U ) -> ran F e. ( LSubSp ` U ) )
4 3 adantl
 |-  ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> ran F e. ( LSubSp ` U ) )
5 eqid
 |-  ( LSubSp ` U ) = ( LSubSp ` U )
6 1 5 lsslvec
 |-  ( ( U e. LVec /\ ran F e. ( LSubSp ` U ) ) -> I e. LVec )
7 2 4 6 syl2anc
 |-  ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> I e. LVec )