Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmlmod2 |
|- ( F e. ( V LMHom U ) -> U e. LMod ) |
2 |
1
|
adantl |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> U e. LMod ) |
3 |
|
eqid |
|- ( Scalar ` V ) = ( Scalar ` V ) |
4 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
5 |
3 4
|
lmhmsca |
|- ( F e. ( V LMHom U ) -> ( Scalar ` U ) = ( Scalar ` V ) ) |
6 |
5
|
adantl |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> ( Scalar ` U ) = ( Scalar ` V ) ) |
7 |
3
|
lvecdrng |
|- ( V e. LVec -> ( Scalar ` V ) e. DivRing ) |
8 |
7
|
adantr |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> ( Scalar ` V ) e. DivRing ) |
9 |
6 8
|
eqeltrd |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> ( Scalar ` U ) e. DivRing ) |
10 |
4
|
islvec |
|- ( U e. LVec <-> ( U e. LMod /\ ( Scalar ` U ) e. DivRing ) ) |
11 |
2 9 10
|
sylanbrc |
|- ( ( V e. LVec /\ F e. ( V LMHom U ) ) -> U e. LVec ) |