Metamath Proof Explorer


Theorem lmhmlvec2

Description: A homomorphism of left vector spaces has a left vector space as codomain. (Contributed by Thierry Arnoux, 7-May-2023)

Ref Expression
Assertion lmhmlvec2 V LVec F V LMHom U U LVec

Proof

Step Hyp Ref Expression
1 lmhmlmod2 F V LMHom U U LMod
2 1 adantl V LVec F V LMHom U U LMod
3 eqid Scalar V = Scalar V
4 eqid Scalar U = Scalar U
5 3 4 lmhmsca F V LMHom U Scalar U = Scalar V
6 5 adantl V LVec F V LMHom U Scalar U = Scalar V
7 3 lvecdrng V LVec Scalar V DivRing
8 7 adantr V LVec F V LMHom U Scalar V DivRing
9 6 8 eqeltrd V LVec F V LMHom U Scalar U DivRing
10 4 islvec U LVec U LMod Scalar U DivRing
11 2 9 10 sylanbrc V LVec F V LMHom U U LVec