Metamath Proof Explorer


Theorem lmhmlvec2

Description: A homomorphism of left vector spaces has a left vector space as codomain. (Contributed by Thierry Arnoux, 7-May-2023)

Ref Expression
Assertion lmhmlvec2 VLVecFVLMHomUULVec

Proof

Step Hyp Ref Expression
1 lmhmlmod2 FVLMHomUULMod
2 1 adantl VLVecFVLMHomUULMod
3 eqid ScalarV=ScalarV
4 eqid ScalarU=ScalarU
5 3 4 lmhmsca FVLMHomUScalarU=ScalarV
6 5 adantl VLVecFVLMHomUScalarU=ScalarV
7 3 lvecdrng VLVecScalarVDivRing
8 7 adantr VLVecFVLMHomUScalarVDivRing
9 6 8 eqeltrd VLVecFVLMHomUScalarUDivRing
10 4 islvec ULVecULModScalarUDivRing
11 2 9 10 sylanbrc VLVecFVLMHomUULVec