Metamath Proof Explorer


Theorem imlmhm

Description: The image of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023)

Ref Expression
Hypothesis imlmhm.i 𝐼 = ( 𝑈s ran 𝐹 )
Assertion imlmhm ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐼 ∈ LVec )

Proof

Step Hyp Ref Expression
1 imlmhm.i 𝐼 = ( 𝑈s ran 𝐹 )
2 lmhmlvec2 ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝑈 ∈ LVec )
3 lmhmrnlss ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) )
4 3 adantl ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) )
5 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
6 1 5 lsslvec ( ( 𝑈 ∈ LVec ∧ ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ) → 𝐼 ∈ LVec )
7 2 4 6 syl2anc ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐼 ∈ LVec )