Description: The image of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | imlmhm.i | ⊢ 𝐼 = ( 𝑈 ↾s ran 𝐹 ) | |
Assertion | imlmhm | ⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐼 ∈ LVec ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imlmhm.i | ⊢ 𝐼 = ( 𝑈 ↾s ran 𝐹 ) | |
2 | lmhmlvec2 | ⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝑈 ∈ LVec ) | |
3 | lmhmrnlss | ⊢ ( 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ) | |
4 | 3 | adantl | ⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ) |
5 | eqid | ⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) | |
6 | 1 5 | lsslvec | ⊢ ( ( 𝑈 ∈ LVec ∧ ran 𝐹 ∈ ( LSubSp ‘ 𝑈 ) ) → 𝐼 ∈ LVec ) |
7 | 2 4 6 | syl2anc | ⊢ ( ( 𝑉 ∈ LVec ∧ 𝐹 ∈ ( 𝑉 LMHom 𝑈 ) ) → 𝐼 ∈ LVec ) |