| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmkerlss.k |
|- K = ( `' F " { .0. } ) |
| 2 |
|
lmhmkerlss.z |
|- .0. = ( 0g ` T ) |
| 3 |
|
lmhmkerlss.u |
|- U = ( LSubSp ` S ) |
| 4 |
|
lmhmlmod2 |
|- ( F e. ( S LMHom T ) -> T e. LMod ) |
| 5 |
|
eqid |
|- ( LSubSp ` T ) = ( LSubSp ` T ) |
| 6 |
2 5
|
lsssn0 |
|- ( T e. LMod -> { .0. } e. ( LSubSp ` T ) ) |
| 7 |
4 6
|
syl |
|- ( F e. ( S LMHom T ) -> { .0. } e. ( LSubSp ` T ) ) |
| 8 |
3 5
|
lmhmpreima |
|- ( ( F e. ( S LMHom T ) /\ { .0. } e. ( LSubSp ` T ) ) -> ( `' F " { .0. } ) e. U ) |
| 9 |
7 8
|
mpdan |
|- ( F e. ( S LMHom T ) -> ( `' F " { .0. } ) e. U ) |
| 10 |
1 9
|
eqeltrid |
|- ( F e. ( S LMHom T ) -> K e. U ) |