| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmhmkerlss.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
| 2 |
|
lmhmkerlss.z |
⊢ 0 = ( 0g ‘ 𝑇 ) |
| 3 |
|
lmhmkerlss.u |
⊢ 𝑈 = ( LSubSp ‘ 𝑆 ) |
| 4 |
|
lmhmlmod2 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) |
| 5 |
|
eqid |
⊢ ( LSubSp ‘ 𝑇 ) = ( LSubSp ‘ 𝑇 ) |
| 6 |
2 5
|
lsssn0 |
⊢ ( 𝑇 ∈ LMod → { 0 } ∈ ( LSubSp ‘ 𝑇 ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → { 0 } ∈ ( LSubSp ‘ 𝑇 ) ) |
| 8 |
3 5
|
lmhmpreima |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ { 0 } ∈ ( LSubSp ‘ 𝑇 ) ) → ( ◡ 𝐹 “ { 0 } ) ∈ 𝑈 ) |
| 9 |
7 8
|
mpdan |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ◡ 𝐹 “ { 0 } ) ∈ 𝑈 ) |
| 10 |
1 9
|
eqeltrid |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐾 ∈ 𝑈 ) |