| Step |
Hyp |
Ref |
Expression |
| 1 |
|
algextdeg.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝐹 ) |
| 2 |
|
algextdeg.l |
⊢ 𝐿 = ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
| 3 |
|
algextdeg.d |
⊢ 𝐷 = ( deg1 ‘ 𝐸 ) |
| 4 |
|
algextdeg.m |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
| 5 |
|
algextdeg.f |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 6 |
|
algextdeg.e |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 7 |
|
algextdeg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 8 |
|
algextdeglem.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
| 9 |
|
algextdeglem.y |
⊢ 𝑃 = ( Poly1 ‘ 𝐾 ) |
| 10 |
|
algextdeglem.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 11 |
|
algextdeglem.g |
⊢ 𝐺 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
| 12 |
|
algextdeglem.n |
⊢ 𝑁 = ( 𝑥 ∈ 𝑈 ↦ [ 𝑥 ] ( 𝑃 ~QG 𝑍 ) ) |
| 13 |
|
algextdeglem.z |
⊢ 𝑍 = ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) |
| 14 |
|
algextdeglem.q |
⊢ 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) ) |
| 15 |
|
algextdeglem.j |
⊢ 𝐽 = ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐺 “ 𝑝 ) ) |
| 16 |
|
algextdeglem.r |
⊢ 𝑅 = ( rem1p ‘ 𝐾 ) |
| 17 |
|
algextdeglem.h |
⊢ 𝐻 = ( 𝑝 ∈ 𝑈 ↦ ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
| 18 |
|
algextdeglem.t |
⊢ 𝑇 = ( ◡ ( deg1 ‘ 𝐾 ) “ ( -∞ [,) ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 19 |
|
algextdeglem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 20 |
1
|
fveq2i |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 21 |
9 20
|
eqtri |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 23 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
| 24 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 25 |
|
sdrgsubrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 26 |
6 25
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 27 |
8 1 22 23 24 26
|
irngssv |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
| 28 |
27 7
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐸 ) ) |
| 29 |
|
eqid |
⊢ { 𝑝 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = { 𝑝 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } |
| 30 |
|
eqid |
⊢ ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 ) |
| 31 |
|
eqid |
⊢ ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 32 |
8 21 22 5 6 28 23 29 30 31 4
|
minplycl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) |
| 33 |
32 10
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ 𝑈 ) |
| 34 |
1 3 9 10 33 26
|
ressdeg1 |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) = ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) |
| 35 |
34
|
breq2d |
⊢ ( 𝜑 → ( ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) < ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ↔ ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 36 |
|
eqid |
⊢ ( deg1 ‘ 𝐾 ) = ( deg1 ‘ 𝐾 ) |
| 37 |
5
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
| 38 |
37
|
drngringd |
⊢ ( 𝜑 → 𝐸 ∈ Ring ) |
| 39 |
|
eqid |
⊢ ( Poly1 ‘ 𝐸 ) = ( Poly1 ‘ 𝐸 ) |
| 40 |
|
eqid |
⊢ ( PwSer1 ‘ 𝐾 ) = ( PwSer1 ‘ 𝐾 ) |
| 41 |
|
eqid |
⊢ ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) = ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) |
| 42 |
|
eqid |
⊢ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) = ( Base ‘ ( Poly1 ‘ 𝐸 ) ) |
| 43 |
39 1 9 10 26 40 41 42
|
ressply1bas2 |
⊢ ( 𝜑 → 𝑈 = ( ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) ) |
| 44 |
|
inss2 |
⊢ ( ( Base ‘ ( PwSer1 ‘ 𝐾 ) ) ∩ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) ⊆ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) |
| 45 |
43 44
|
eqsstrdi |
⊢ ( 𝜑 → 𝑈 ⊆ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) |
| 46 |
45 33
|
sseldd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ) |
| 47 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) |
| 48 |
47 5 6 4 7
|
irngnminplynz |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) ) |
| 49 |
3 39 47 42
|
deg1nn0cl |
⊢ ( ( 𝐸 ∈ Ring ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Base ‘ ( Poly1 ‘ 𝐸 ) ) ∧ ( 𝑀 ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) ) → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 50 |
38 46 48 49
|
syl3anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 51 |
|
fldsdrgfld |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 52 |
5 6 51
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 53 |
1 52
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 54 |
|
fldidom |
⊢ ( 𝐾 ∈ Field → 𝐾 ∈ IDomn ) |
| 55 |
53 54
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ IDomn ) |
| 56 |
55
|
idomringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
| 57 |
9 36 18 50 56 10
|
ply1degleel |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑇 ↔ ( 𝑋 ∈ 𝑈 ∧ ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) < ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) ) |
| 58 |
19 57
|
mpbirand |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑇 ↔ ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) < ( 𝐷 ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 59 |
|
eqid |
⊢ ( Unic1p ‘ 𝐾 ) = ( Unic1p ‘ 𝐾 ) |
| 60 |
55
|
idomdomd |
⊢ ( 𝜑 → 𝐾 ∈ Domn ) |
| 61 |
1
|
fveq2i |
⊢ ( Monic1p ‘ 𝐾 ) = ( Monic1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 62 |
47 5 6 4 7 61
|
minplym1p |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Monic1p ‘ 𝐾 ) ) |
| 63 |
|
eqid |
⊢ ( Monic1p ‘ 𝐾 ) = ( Monic1p ‘ 𝐾 ) |
| 64 |
59 63
|
mon1puc1p |
⊢ ( ( 𝐾 ∈ Ring ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( Monic1p ‘ 𝐾 ) ) → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) |
| 65 |
56 62 64
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( Unic1p ‘ 𝐾 ) ) |
| 66 |
9 10 59 16 36 60 19 65
|
r1pid2 |
⊢ ( 𝜑 → ( ( 𝑋 𝑅 ( 𝑀 ‘ 𝐴 ) ) = 𝑋 ↔ ( ( deg1 ‘ 𝐾 ) ‘ 𝑋 ) < ( ( deg1 ‘ 𝐾 ) ‘ ( 𝑀 ‘ 𝐴 ) ) ) ) |
| 67 |
35 58 66
|
3bitr4d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑇 ↔ ( 𝑋 𝑅 ( 𝑀 ‘ 𝐴 ) ) = 𝑋 ) ) |
| 68 |
|
oveq1 |
⊢ ( 𝑝 = 𝑋 → ( 𝑝 𝑅 ( 𝑀 ‘ 𝐴 ) ) = ( 𝑋 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
| 69 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑋 𝑅 ( 𝑀 ‘ 𝐴 ) ) ∈ V ) |
| 70 |
17 68 19 69
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐻 ‘ 𝑋 ) = ( 𝑋 𝑅 ( 𝑀 ‘ 𝐴 ) ) ) |
| 71 |
70
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐻 ‘ 𝑋 ) = 𝑋 ↔ ( 𝑋 𝑅 ( 𝑀 ‘ 𝐴 ) ) = 𝑋 ) ) |
| 72 |
67 71
|
bitr4d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑇 ↔ ( 𝐻 ‘ 𝑋 ) = 𝑋 ) ) |