Metamath Proof Explorer


Theorem algextdeglem7

Description: Lemma for algextdeg . The polynomials X of lower degree than the minimal polynomial are left unchanged when taking the remainder of the division by that minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k K = E 𝑠 F
algextdeg.l L = E 𝑠 E fldGen F A
algextdeg.d D = deg 1 E
algextdeg.m M = E minPoly F
algextdeg.f φ E Field
algextdeg.e φ F SubDRing E
algextdeg.a φ A E IntgRing F
algextdeglem.o O = E evalSub 1 F
algextdeglem.y P = Poly 1 K
algextdeglem.u U = Base P
algextdeglem.g G = p U O p A
algextdeglem.n N = x U x P ~ QG Z
algextdeglem.z Z = G -1 0 L
algextdeglem.q Q = P / 𝑠 P ~ QG Z
algextdeglem.j J = p Base Q G p
algextdeglem.r R = rem 1p K
algextdeglem.h H = p U p R M A
algextdeglem.t T = deg 1 K -1 −∞ D M A
algextdeglem.x φ X U
Assertion algextdeglem7 φ X T H X = X

Proof

Step Hyp Ref Expression
1 algextdeg.k K = E 𝑠 F
2 algextdeg.l L = E 𝑠 E fldGen F A
3 algextdeg.d D = deg 1 E
4 algextdeg.m M = E minPoly F
5 algextdeg.f φ E Field
6 algextdeg.e φ F SubDRing E
7 algextdeg.a φ A E IntgRing F
8 algextdeglem.o O = E evalSub 1 F
9 algextdeglem.y P = Poly 1 K
10 algextdeglem.u U = Base P
11 algextdeglem.g G = p U O p A
12 algextdeglem.n N = x U x P ~ QG Z
13 algextdeglem.z Z = G -1 0 L
14 algextdeglem.q Q = P / 𝑠 P ~ QG Z
15 algextdeglem.j J = p Base Q G p
16 algextdeglem.r R = rem 1p K
17 algextdeglem.h H = p U p R M A
18 algextdeglem.t T = deg 1 K -1 −∞ D M A
19 algextdeglem.x φ X U
20 1 fveq2i Poly 1 K = Poly 1 E 𝑠 F
21 9 20 eqtri P = Poly 1 E 𝑠 F
22 eqid Base E = Base E
23 eqid 0 E = 0 E
24 5 fldcrngd φ E CRing
25 sdrgsubrg F SubDRing E F SubRing E
26 6 25 syl φ F SubRing E
27 8 1 22 23 24 26 irngssv φ E IntgRing F Base E
28 27 7 sseldd φ A Base E
29 eqid p dom O | O p A = 0 E = p dom O | O p A = 0 E
30 eqid RSpan P = RSpan P
31 eqid idlGen 1p E 𝑠 F = idlGen 1p E 𝑠 F
32 8 21 22 5 6 28 23 29 30 31 4 minplycl φ M A Base P
33 32 10 eleqtrrdi φ M A U
34 1 3 9 10 33 26 ressdeg1 φ D M A = deg 1 K M A
35 34 breq2d φ deg 1 K X < D M A deg 1 K X < deg 1 K M A
36 eqid deg 1 K = deg 1 K
37 5 flddrngd φ E DivRing
38 37 drngringd φ E Ring
39 eqid Poly 1 E = Poly 1 E
40 eqid PwSer 1 K = PwSer 1 K
41 eqid Base PwSer 1 K = Base PwSer 1 K
42 eqid Base Poly 1 E = Base Poly 1 E
43 39 1 9 10 26 40 41 42 ressply1bas2 φ U = Base PwSer 1 K Base Poly 1 E
44 inss2 Base PwSer 1 K Base Poly 1 E Base Poly 1 E
45 43 44 eqsstrdi φ U Base Poly 1 E
46 45 33 sseldd φ M A Base Poly 1 E
47 eqid 0 Poly 1 E = 0 Poly 1 E
48 47 5 6 4 7 irngnminplynz φ M A 0 Poly 1 E
49 3 39 47 42 deg1nn0cl E Ring M A Base Poly 1 E M A 0 Poly 1 E D M A 0
50 38 46 48 49 syl3anc φ D M A 0
51 fldsdrgfld E Field F SubDRing E E 𝑠 F Field
52 5 6 51 syl2anc φ E 𝑠 F Field
53 1 52 eqeltrid φ K Field
54 fldidom K Field K IDomn
55 53 54 syl φ K IDomn
56 55 idomringd φ K Ring
57 9 36 18 50 56 10 ply1degleel φ X T X U deg 1 K X < D M A
58 19 57 mpbirand φ X T deg 1 K X < D M A
59 eqid Unic 1p K = Unic 1p K
60 55 idomdomd φ K Domn
61 1 fveq2i Monic 1p K = Monic 1p E 𝑠 F
62 47 5 6 4 7 61 minplym1p φ M A Monic 1p K
63 eqid Monic 1p K = Monic 1p K
64 59 63 mon1puc1p K Ring M A Monic 1p K M A Unic 1p K
65 56 62 64 syl2anc φ M A Unic 1p K
66 9 10 59 16 36 60 19 65 r1pid2 φ X R M A = X deg 1 K X < deg 1 K M A
67 35 58 66 3bitr4d φ X T X R M A = X
68 oveq1 p = X p R M A = X R M A
69 ovexd φ X R M A V
70 17 68 19 69 fvmptd3 φ H X = X R M A
71 70 eqeq1d φ H X = X X R M A = X
72 67 71 bitr4d φ X T H X = X