Metamath Proof Explorer


Theorem algextdeg

Description: The degree of an algebraic field extension (noted [ L : K ] ) is the degree of the minimal polynomial M ( A ) , whereas L is the field generated by K and the algebraic element A . (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k K = E 𝑠 F
algextdeg.l L = E 𝑠 E fldGen F A
algextdeg.d D = deg 1 E
algextdeg.m M = E minPoly F
algextdeg.f φ E Field
algextdeg.e φ F SubDRing E
algextdeg.a φ A E IntgRing F
Assertion algextdeg φ L .:. K = D M A

Proof

Step Hyp Ref Expression
1 algextdeg.k K = E 𝑠 F
2 algextdeg.l L = E 𝑠 E fldGen F A
3 algextdeg.d D = deg 1 E
4 algextdeg.m M = E minPoly F
5 algextdeg.f φ E Field
6 algextdeg.e φ F SubDRing E
7 algextdeg.a φ A E IntgRing F
8 eqid E evalSub 1 F = E evalSub 1 F
9 eqid Poly 1 K = Poly 1 K
10 eqid Base Poly 1 K = Base Poly 1 K
11 fveq2 q = p E evalSub 1 F q = E evalSub 1 F p
12 11 fveq1d q = p E evalSub 1 F q A = E evalSub 1 F p A
13 12 cbvmptv q Base Poly 1 K E evalSub 1 F q A = p Base Poly 1 K E evalSub 1 F p A
14 eceq1 y = x y Poly 1 K ~ QG q Base Poly 1 K E evalSub 1 F q A -1 0 L = x Poly 1 K ~ QG q Base Poly 1 K E evalSub 1 F q A -1 0 L
15 14 cbvmptv y Base Poly 1 K y Poly 1 K ~ QG q Base Poly 1 K E evalSub 1 F q A -1 0 L = x Base Poly 1 K x Poly 1 K ~ QG q Base Poly 1 K E evalSub 1 F q A -1 0 L
16 eqid q Base Poly 1 K E evalSub 1 F q A -1 0 L = q Base Poly 1 K E evalSub 1 F q A -1 0 L
17 eqid Poly 1 K / 𝑠 Poly 1 K ~ QG q Base Poly 1 K E evalSub 1 F q A -1 0 L = Poly 1 K / 𝑠 Poly 1 K ~ QG q Base Poly 1 K E evalSub 1 F q A -1 0 L
18 imaeq2 r = p q Base Poly 1 K E evalSub 1 F q A r = q Base Poly 1 K E evalSub 1 F q A p
19 18 unieqd r = p q Base Poly 1 K E evalSub 1 F q A r = q Base Poly 1 K E evalSub 1 F q A p
20 19 cbvmptv r Base Poly 1 K / 𝑠 Poly 1 K ~ QG q Base Poly 1 K E evalSub 1 F q A -1 0 L q Base Poly 1 K E evalSub 1 F q A r = p Base Poly 1 K / 𝑠 Poly 1 K ~ QG q Base Poly 1 K E evalSub 1 F q A -1 0 L q Base Poly 1 K E evalSub 1 F q A p
21 eqid rem 1p K = rem 1p K
22 oveq1 q = p q rem 1p K M A = p rem 1p K M A
23 22 cbvmptv q Base Poly 1 K q rem 1p K M A = p Base Poly 1 K p rem 1p K M A
24 1 2 3 4 5 6 7 8 9 10 13 15 16 17 20 21 23 algextdeglem6 φ dim Poly 1 K / 𝑠 Poly 1 K ~ QG q Base Poly 1 K E evalSub 1 F q A -1 0 L = dim q Base Poly 1 K q rem 1p K M A 𝑠 Poly 1 K
25 1 2 3 4 5 6 7 8 9 10 13 15 16 17 20 algextdeglem4 φ dim Poly 1 K / 𝑠 Poly 1 K ~ QG q Base Poly 1 K E evalSub 1 F q A -1 0 L = L .:. K
26 eqid deg 1 K -1 −∞ D M A = deg 1 K -1 −∞ D M A
27 1 2 3 4 5 6 7 8 9 10 13 15 16 17 20 21 23 26 algextdeglem8 φ dim q Base Poly 1 K q rem 1p K M A 𝑠 Poly 1 K = D M A
28 24 25 27 3eqtr3d φ L .:. K = D M A