Metamath Proof Explorer


Theorem algextdeglem8

Description: Lemma for algextdeg . The dimension of the univariate polynomial remainder ring ( H "s P ) is the degree of the minimal polynomial. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k K = E 𝑠 F
algextdeg.l L = E 𝑠 E fldGen F A
algextdeg.d D = deg 1 E
algextdeg.m M = E minPoly F
algextdeg.f φ E Field
algextdeg.e φ F SubDRing E
algextdeg.a φ A E IntgRing F
algextdeglem.o O = E evalSub 1 F
algextdeglem.y P = Poly 1 K
algextdeglem.u U = Base P
algextdeglem.g G = p U O p A
algextdeglem.n N = x U x P ~ QG Z
algextdeglem.z Z = G -1 0 L
algextdeglem.q Q = P / 𝑠 P ~ QG Z
algextdeglem.j J = p Base Q G p
algextdeglem.r R = rem 1p K
algextdeglem.h H = p U p R M A
algextdeglem.t T = deg 1 K -1 −∞ D M A
Assertion algextdeglem8 φ dim H 𝑠 P = D M A

Proof

Step Hyp Ref Expression
1 algextdeg.k K = E 𝑠 F
2 algextdeg.l L = E 𝑠 E fldGen F A
3 algextdeg.d D = deg 1 E
4 algextdeg.m M = E minPoly F
5 algextdeg.f φ E Field
6 algextdeg.e φ F SubDRing E
7 algextdeg.a φ A E IntgRing F
8 algextdeglem.o O = E evalSub 1 F
9 algextdeglem.y P = Poly 1 K
10 algextdeglem.u U = Base P
11 algextdeglem.g G = p U O p A
12 algextdeglem.n N = x U x P ~ QG Z
13 algextdeglem.z Z = G -1 0 L
14 algextdeglem.q Q = P / 𝑠 P ~ QG Z
15 algextdeglem.j J = p Base Q G p
16 algextdeglem.r R = rem 1p K
17 algextdeglem.h H = p U p R M A
18 algextdeglem.t T = deg 1 K -1 −∞ D M A
19 eqidd φ H 𝑠 P = H 𝑠 P
20 10 a1i φ U = Base P
21 1 sdrgdrng F SubDRing E K DivRing
22 6 21 syl φ K DivRing
23 22 drngringd φ K Ring
24 23 adantr φ p U K Ring
25 simpr φ p U p U
26 eqid 0 Poly 1 E = 0 Poly 1 E
27 1 fveq2i Monic 1p K = Monic 1p E 𝑠 F
28 26 5 6 4 7 27 minplym1p φ M A Monic 1p K
29 28 adantr φ p U M A Monic 1p K
30 eqid Unic 1p K = Unic 1p K
31 eqid Monic 1p K = Monic 1p K
32 30 31 mon1puc1p K Ring M A Monic 1p K M A Unic 1p K
33 24 29 32 syl2anc φ p U M A Unic 1p K
34 16 9 10 30 r1pcl K Ring p U M A Unic 1p K p R M A U
35 24 25 33 34 syl3anc φ p U p R M A U
36 eqid deg 1 K = deg 1 K
37 16 9 10 30 36 r1pdeglt K Ring p U M A Unic 1p K deg 1 K p R M A < deg 1 K M A
38 24 25 33 37 syl3anc φ p U deg 1 K p R M A < deg 1 K M A
39 1 fveq2i Poly 1 K = Poly 1 E 𝑠 F
40 9 39 eqtri P = Poly 1 E 𝑠 F
41 eqid Base E = Base E
42 eqid 0 E = 0 E
43 5 fldcrngd φ E CRing
44 sdrgsubrg F SubDRing E F SubRing E
45 6 44 syl φ F SubRing E
46 8 1 41 42 43 45 irngssv φ E IntgRing F Base E
47 46 7 sseldd φ A Base E
48 eqid p dom O | O p A = 0 E = p dom O | O p A = 0 E
49 eqid RSpan P = RSpan P
50 eqid idlGen 1p E 𝑠 F = idlGen 1p E 𝑠 F
51 8 40 41 5 6 47 42 48 49 50 4 minplycl φ M A Base P
52 51 10 eleqtrrdi φ M A U
53 1 3 9 10 52 45 ressdeg1 φ D M A = deg 1 K M A
54 53 adantr φ p U D M A = deg 1 K M A
55 38 54 breqtrrd φ p U deg 1 K p R M A < D M A
56 5 flddrngd φ E DivRing
57 56 drngringd φ E Ring
58 eqid Poly 1 E = Poly 1 E
59 eqid PwSer 1 K = PwSer 1 K
60 eqid Base PwSer 1 K = Base PwSer 1 K
61 eqid Base Poly 1 E = Base Poly 1 E
62 58 1 9 10 45 59 60 61 ressply1bas2 φ U = Base PwSer 1 K Base Poly 1 E
63 inss2 Base PwSer 1 K Base Poly 1 E Base Poly 1 E
64 62 63 eqsstrdi φ U Base Poly 1 E
65 64 52 sseldd φ M A Base Poly 1 E
66 26 5 6 4 7 irngnminplynz φ M A 0 Poly 1 E
67 3 58 26 61 deg1nn0cl E Ring M A Base Poly 1 E M A 0 Poly 1 E D M A 0
68 57 65 66 67 syl3anc φ D M A 0
69 9 36 18 68 23 10 ply1degleel φ p R M A T p R M A U deg 1 K p R M A < D M A
70 69 adantr φ p U p R M A T p R M A U deg 1 K p R M A < D M A
71 35 55 70 mpbir2and φ p U p R M A T
72 71 ralrimiva φ p U p R M A T
73 oveq1 p = q p R M A = q R M A
74 73 eqeq2d p = q q = p R M A q = q R M A
75 eqcom q = q R M A q R M A = q
76 74 75 bitrdi p = q q = p R M A q R M A = q
77 9 36 18 68 23 10 ply1degltel φ q T q U deg 1 K q D M A 1
78 77 simprbda φ q T q U
79 77 simplbda φ q T deg 1 K q D M A 1
80 53 oveq1d φ D M A 1 = deg 1 K M A 1
81 80 adantr φ q T D M A 1 = deg 1 K M A 1
82 79 81 breqtrd φ q T deg 1 K q deg 1 K M A 1
83 36 9 10 deg1cl q U deg 1 K q 0 −∞
84 78 83 syl φ q T deg 1 K q 0 −∞
85 68 nn0zd φ D M A
86 53 85 eqeltrrd φ deg 1 K M A
87 86 adantr φ q T deg 1 K M A
88 degltlem1 deg 1 K q 0 −∞ deg 1 K M A deg 1 K q < deg 1 K M A deg 1 K q deg 1 K M A 1
89 84 87 88 syl2anc φ q T deg 1 K q < deg 1 K M A deg 1 K q deg 1 K M A 1
90 82 89 mpbird φ q T deg 1 K q < deg 1 K M A
91 fldsdrgfld E Field F SubDRing E E 𝑠 F Field
92 5 6 91 syl2anc φ E 𝑠 F Field
93 1 92 eqeltrid φ K Field
94 fldidom K Field K IDomn
95 93 94 syl φ K IDomn
96 95 idomdomd φ K Domn
97 96 adantr φ q T K Domn
98 23 28 32 syl2anc φ M A Unic 1p K
99 98 adantr φ q T M A Unic 1p K
100 9 10 30 16 36 97 78 99 r1pid2 φ q T q R M A = q deg 1 K q < deg 1 K M A
101 90 100 mpbird φ q T q R M A = q
102 76 78 101 rspcedvdw φ q T p U q = p R M A
103 102 ralrimiva φ q T p U q = p R M A
104 17 fompt H : U onto T p U p R M A T q T p U q = p R M A
105 72 103 104 sylanbrc φ H : U onto T
106 9 ply1ring K Ring P Ring
107 23 106 syl φ P Ring
108 19 20 105 107 imasbas φ T = Base H 𝑠 P
109 78 ex φ q T q U
110 109 ssrdv φ T U
111 eqid P 𝑠 T = P 𝑠 T
112 111 10 ressbas2 T U T = Base P 𝑠 T
113 110 112 syl φ T = Base P 𝑠 T
114 ssidd φ T T
115 eqid H 𝑠 P = H 𝑠 P
116 eqid Base H 𝑠 P = Base H 𝑠 P
117 110 ad2antrr φ x T y T T U
118 simplr φ x T y T x T
119 117 118 sseldd φ x T y T x U
120 simpr φ x T y T y T
121 117 120 sseldd φ x T y T y U
122 foeq3 T = Base H 𝑠 P H : U onto T H : U onto Base H 𝑠 P
123 108 122 syl φ H : U onto T H : U onto Base H 𝑠 P
124 105 123 mpbid φ H : U onto Base H 𝑠 P
125 124 ad2antrr φ x T y T H : U onto Base H 𝑠 P
126 9 10 16 30 17 23 98 r1plmhm φ H P LMHom H 𝑠 P
127 126 lmhmghmd φ H P GrpHom H 𝑠 P
128 ghmmhm H P GrpHom H 𝑠 P H P MndHom H 𝑠 P
129 127 128 syl φ H P MndHom H 𝑠 P
130 129 ad2antrr φ x T y T H P MndHom H 𝑠 P
131 eqid + P = + P
132 eqid + H 𝑠 P = + H 𝑠 P
133 115 10 116 119 121 125 130 131 132 mhmimasplusg φ x T y T H x + H 𝑠 P H y = H x + P y
134 5 ad2antrr φ x T y T E Field
135 6 ad2antrr φ x T y T F SubDRing E
136 7 ad2antrr φ x T y T A E IntgRing F
137 1 2 3 4 134 135 136 8 9 10 11 12 13 14 15 16 17 18 119 algextdeglem7 φ x T y T x T H x = x
138 118 137 mpbid φ x T y T H x = x
139 1 2 3 4 134 135 136 8 9 10 11 12 13 14 15 16 17 18 121 algextdeglem7 φ x T y T y T H y = y
140 120 139 mpbid φ x T y T H y = y
141 138 140 oveq12d φ x T y T H x + H 𝑠 P H y = x + H 𝑠 P y
142 107 ringgrpd φ P Grp
143 9 22 ply1lvec φ P LVec
144 9 36 18 68 23 ply1degltlss φ T LSubSp P
145 eqid LSubSp P = LSubSp P
146 111 145 lsslvec P LVec T LSubSp P P 𝑠 T LVec
147 143 144 146 syl2anc φ P 𝑠 T LVec
148 147 lvecgrpd φ P 𝑠 T Grp
149 10 issubg T SubGrp P P Grp T U P 𝑠 T Grp
150 142 110 148 149 syl3anbrc φ T SubGrp P
151 150 ad2antrr φ x T y T T SubGrp P
152 131 subgcl T SubGrp P x T y T x + P y T
153 151 118 120 152 syl3anc φ x T y T x + P y T
154 142 ad2antrr φ x T y T P Grp
155 10 131 154 119 121 grpcld φ x T y T x + P y U
156 1 2 3 4 134 135 136 8 9 10 11 12 13 14 15 16 17 18 155 algextdeglem7 φ x T y T x + P y T H x + P y = x + P y
157 153 156 mpbid φ x T y T H x + P y = x + P y
158 133 141 157 3eqtr3d φ x T y T x + H 𝑠 P y = x + P y
159 fvex deg 1 K V
160 cnvexg deg 1 K V deg 1 K -1 V
161 imaexg deg 1 K -1 V deg 1 K -1 −∞ D M A V
162 159 160 161 mp2b deg 1 K -1 −∞ D M A V
163 18 162 eqeltri T V
164 111 131 ressplusg T V + P = + P 𝑠 T
165 163 164 ax-mp + P = + P 𝑠 T
166 165 oveqi x + P y = x + P 𝑠 T y
167 158 166 eqtrdi φ x T y T x + H 𝑠 P y = x + P 𝑠 T y
168 167 anasss φ x T y T x + H 𝑠 P y = x + P 𝑠 T y
169 simprr φ x F y T y T
170 5 adantr φ x F y T E Field
171 6 adantr φ x F y T F SubDRing E
172 7 adantr φ x F y T A E IntgRing F
173 110 adantr φ x F y T T U
174 173 169 sseldd φ x F y T y U
175 1 2 3 4 170 171 172 8 9 10 11 12 13 14 15 16 17 18 174 algextdeglem7 φ x F y T y T H y = y
176 169 175 mpbid φ x F y T H y = y
177 176 oveq2d φ x F y T x H 𝑠 P H y = x H 𝑠 P y
178 simprl φ x F y T x F
179 41 sdrgss F SubDRing E F Base E
180 1 41 ressbas2 F Base E F = Base K
181 6 179 180 3syl φ F = Base K
182 9 ply1sca K Ring K = Scalar P
183 23 182 syl φ K = Scalar P
184 183 fveq2d φ Base K = Base Scalar P
185 181 184 eqtrd φ F = Base Scalar P
186 185 adantr φ x F y T F = Base Scalar P
187 178 186 eleqtrd φ x F y T x Base Scalar P
188 124 adantr φ x F y T H : U onto Base H 𝑠 P
189 126 adantr φ x F y T H P LMHom H 𝑠 P
190 eqid P = P
191 eqid H 𝑠 P = H 𝑠 P
192 eqid Base Scalar P = Base Scalar P
193 115 10 116 187 174 188 189 190 191 192 lmhmimasvsca φ x F y T x H 𝑠 P H y = H x P y
194 177 193 eqtr3d φ x F y T x H 𝑠 P y = H x P y
195 71 17 fmptd φ H : U T
196 195 adantr φ x F y T H : U T
197 eqid Scalar P = Scalar P
198 143 lveclmodd φ P LMod
199 198 adantr φ x F y T P LMod
200 10 197 190 192 199 187 174 lmodvscld φ x F y T x P y U
201 196 200 ffvelcdmd φ x F y T H x P y T
202 194 201 eqeltrd φ x F y T x H 𝑠 P y T
203 144 adantr φ x F y T T LSubSp P
204 197 190 192 145 lssvscl P LMod T LSubSp P x Base Scalar P y T x P y T
205 199 203 187 169 204 syl22anc φ x F y T x P y T
206 1 2 3 4 170 171 172 8 9 10 11 12 13 14 15 16 17 18 200 algextdeglem7 φ x F y T x P y T H x P y = x P y
207 205 206 mpbid φ x F y T H x P y = x P y
208 111 190 ressvsca T V P = P 𝑠 T
209 163 208 mp1i φ x F y T P = P 𝑠 T
210 209 oveqd φ x F y T x P y = x P 𝑠 T y
211 194 207 210 3eqtrd φ x F y T x H 𝑠 P y = x P 𝑠 T y
212 eqid Scalar H 𝑠 P = Scalar H 𝑠 P
213 111 197 resssca T V Scalar P = Scalar P 𝑠 T
214 163 213 ax-mp Scalar P = Scalar P 𝑠 T
215 19 20 105 107 197 imassca φ Scalar P = Scalar H 𝑠 P
216 183 215 eqtrd φ K = Scalar H 𝑠 P
217 216 fveq2d φ Base K = Base Scalar H 𝑠 P
218 181 217 eqtrd φ F = Base Scalar H 𝑠 P
219 215 fveq2d φ + Scalar P = + Scalar H 𝑠 P
220 219 oveqd φ x + Scalar P y = x + Scalar H 𝑠 P y
221 220 eqcomd φ x + Scalar H 𝑠 P y = x + Scalar P y
222 221 adantr φ x F y F x + Scalar H 𝑠 P y = x + Scalar P y
223 lmhmlvec2 P LVec H P LMHom H 𝑠 P H 𝑠 P LVec
224 143 126 223 syl2anc φ H 𝑠 P LVec
225 108 113 114 168 202 211 212 214 218 185 222 224 147 dimpropd φ dim H 𝑠 P = dim P 𝑠 T
226 9 36 18 68 22 111 ply1degltdim φ dim P 𝑠 T = D M A
227 225 226 eqtrd φ dim H 𝑠 P = D M A