Metamath Proof Explorer


Theorem imassca

Description: The scalar field of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses imasbas.u φU=F𝑠R
imasbas.v φV=BaseR
imasbas.f φF:VontoB
imasbas.r φRZ
imassca.g G=ScalarR
Assertion imassca φG=ScalarU

Proof

Step Hyp Ref Expression
1 imasbas.u φU=F𝑠R
2 imasbas.v φV=BaseR
3 imasbas.f φF:VontoB
4 imasbas.r φRZ
5 imassca.g G=ScalarR
6 5 fvexi GV
7 eqid BasendxB+ndx+UndxUScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU=BasendxB+ndx+UndxUScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
8 7 imasvalstr BasendxB+ndx+UndxUScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistUStruct112
9 scaid Scalar=SlotScalarndx
10 snsstp1 ScalarndxGScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖Rq
11 ssun2 ScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqBasendxB+ndx+UndxUScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖Rq
12 10 11 sstri ScalarndxGBasendxB+ndx+UndxUScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖Rq
13 ssun1 BasendxB+ndx+UndxUScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqBasendxB+ndx+UndxUScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
14 12 13 sstri ScalarndxGBasendxB+ndx+UndxUScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
15 8 9 14 strfv GVG=ScalarBasendxB+ndx+UndxUScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
16 6 15 ax-mp G=ScalarBasendxB+ndx+UndxUScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
17 eqid +R=+R
18 eqid R=R
19 eqid BaseG=BaseG
20 eqid R=R
21 eqid 𝑖R=𝑖R
22 eqid TopOpenR=TopOpenR
23 eqid distR=distR
24 eqid R=R
25 eqid +U=+U
26 1 2 3 4 17 25 imasplusg φ+U=pVqVFpFqFp+Rq
27 eqid U=U
28 1 2 3 4 18 27 imasmulr φU=pVqVFpFqFpRq
29 eqidd φqVpBaseG,xFqFpRq=qVpBaseG,xFqFpRq
30 eqidd φpVqVFpFqp𝑖Rq=pVqVFpFqp𝑖Rq
31 eqidd φTopOpenRqTopF=TopOpenRqTopF
32 eqid distU=distU
33 1 2 3 4 23 32 imasds φdistU=xB,yBsupnranghV×V1n|F1sth1=xF2ndhn=yi1n1F2ndhi=F1sthi+1𝑠*distRg*<
34 eqidd φFRF-1=FRF-1
35 1 2 17 18 5 19 20 21 22 23 24 26 28 29 30 31 33 34 3 4 imasval φU=BasendxB+ndx+UndxUScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
36 35 fveq2d φScalarU=ScalarBasendxB+ndx+UndxUScalarndxGndxqVpBaseG,xFqFpRq𝑖ndxpVqVFpFqp𝑖RqTopSetndxTopOpenRqTopFndxFRF-1distndxdistU
37 16 36 eqtr4id φG=ScalarU