Metamath Proof Explorer


Theorem algextdeglem6

Description: Lemma for algextdeg . By r1pquslmic , the univariate polynomial remainder ring ( H "s P ) is isomorphic with the quotient ring Q . (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k K = E 𝑠 F
algextdeg.l L = E 𝑠 E fldGen F A
algextdeg.d D = deg 1 E
algextdeg.m M = E minPoly F
algextdeg.f φ E Field
algextdeg.e φ F SubDRing E
algextdeg.a φ A E IntgRing F
algextdeglem.o O = E evalSub 1 F
algextdeglem.y P = Poly 1 K
algextdeglem.u U = Base P
algextdeglem.g G = p U O p A
algextdeglem.n N = x U x P ~ QG Z
algextdeglem.z Z = G -1 0 L
algextdeglem.q Q = P / 𝑠 P ~ QG Z
algextdeglem.j J = p Base Q G p
algextdeglem.r R = rem 1p K
algextdeglem.h H = p U p R M A
Assertion algextdeglem6 φ dim Q = dim H 𝑠 P

Proof

Step Hyp Ref Expression
1 algextdeg.k K = E 𝑠 F
2 algextdeg.l L = E 𝑠 E fldGen F A
3 algextdeg.d D = deg 1 E
4 algextdeg.m M = E minPoly F
5 algextdeg.f φ E Field
6 algextdeg.e φ F SubDRing E
7 algextdeg.a φ A E IntgRing F
8 algextdeglem.o O = E evalSub 1 F
9 algextdeglem.y P = Poly 1 K
10 algextdeglem.u U = Base P
11 algextdeglem.g G = p U O p A
12 algextdeglem.n N = x U x P ~ QG Z
13 algextdeglem.z Z = G -1 0 L
14 algextdeglem.q Q = P / 𝑠 P ~ QG Z
15 algextdeglem.j J = p Base Q G p
16 algextdeglem.r R = rem 1p K
17 algextdeglem.h H = p U p R M A
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 algextdeglem5 φ Z = RSpan P M A
19 sdrgsubrg F SubDRing E F SubRing E
20 6 19 syl φ F SubRing E
21 1 subrgring F SubRing E K Ring
22 20 21 syl φ K Ring
23 9 ply1ring K Ring P Ring
24 22 23 syl φ P Ring
25 1 fveq2i Poly 1 K = Poly 1 E 𝑠 F
26 9 25 eqtri P = Poly 1 E 𝑠 F
27 eqid Base E = Base E
28 eqid 0 E = 0 E
29 5 fldcrngd φ E CRing
30 8 1 27 28 29 20 irngssv φ E IntgRing F Base E
31 30 7 sseldd φ A Base E
32 eqid p dom O | O p A = 0 E = p dom O | O p A = 0 E
33 eqid RSpan P = RSpan P
34 eqid idlGen 1p E 𝑠 F = idlGen 1p E 𝑠 F
35 8 26 27 5 6 31 28 32 33 34 4 minplycl φ M A Base P
36 35 10 eleqtrrdi φ M A U
37 eqid r P = r P
38 10 33 37 rspsn P Ring M A U RSpan P M A = p | M A r P p
39 24 36 38 syl2anc φ RSpan P M A = p | M A r P p
40 nfv p φ
41 nfab1 _ p p | M A r P p
42 nfrab1 _ p p U | H p = 0 P
43 10 37 dvdsrcl2 P Ring M A r P p p U
44 43 ex P Ring M A r P p p U
45 44 pm4.71rd P Ring M A r P p p U M A r P p
46 24 45 syl φ M A r P p p U M A r P p
47 22 adantr φ p U K Ring
48 simpr φ p U p U
49 eqid 0 Poly 1 E = 0 Poly 1 E
50 1 fveq2i Monic 1p K = Monic 1p E 𝑠 F
51 49 5 6 4 7 50 minplym1p φ M A Monic 1p K
52 eqid Unic 1p K = Unic 1p K
53 eqid Monic 1p K = Monic 1p K
54 52 53 mon1puc1p K Ring M A Monic 1p K M A Unic 1p K
55 22 51 54 syl2anc φ M A Unic 1p K
56 55 adantr φ p U M A Unic 1p K
57 eqid 0 P = 0 P
58 9 37 10 52 57 16 dvdsr1p K Ring p U M A Unic 1p K M A r P p p R M A = 0 P
59 47 48 56 58 syl3anc φ p U M A r P p p R M A = 0 P
60 ovexd φ p U p R M A V
61 17 fvmpt2 p U p R M A V H p = p R M A
62 48 60 61 syl2anc φ p U H p = p R M A
63 62 eqeq1d φ p U H p = 0 P p R M A = 0 P
64 59 63 bitr4d φ p U M A r P p H p = 0 P
65 64 pm5.32da φ p U M A r P p p U H p = 0 P
66 46 65 bitrd φ M A r P p p U H p = 0 P
67 abid p p | M A r P p M A r P p
68 rabid p p U | H p = 0 P p U H p = 0 P
69 66 67 68 3bitr4g φ p p | M A r P p p p U | H p = 0 P
70 40 41 42 69 eqrd φ p | M A r P p = p U | H p = 0 P
71 40 60 17 fnmptd φ H Fn U
72 fniniseg2 H Fn U H -1 0 P = p U | H p = 0 P
73 71 72 syl φ H -1 0 P = p U | H p = 0 P
74 70 73 eqtr4d φ p | M A r P p = H -1 0 P
75 18 39 74 3eqtrd φ Z = H -1 0 P
76 75 oveq2d φ P ~ QG Z = P ~ QG H -1 0 P
77 76 oveq2d φ P / 𝑠 P ~ QG Z = P / 𝑠 P ~ QG H -1 0 P
78 14 77 eqtrid φ Q = P / 𝑠 P ~ QG H -1 0 P
79 eqid H -1 0 P = H -1 0 P
80 eqid P / 𝑠 P ~ QG H -1 0 P = P / 𝑠 P ~ QG H -1 0 P
81 9 10 16 52 17 22 55 57 79 80 r1pquslmic φ P / 𝑠 P ~ QG H -1 0 P 𝑚 H 𝑠 P
82 78 81 eqbrtrd φ Q 𝑚 H 𝑠 P
83 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 algextdeglem3 φ Q LVec
84 82 83 lmicdim φ dim Q = dim H 𝑠 P