Metamath Proof Explorer


Theorem algextdeglem3

Description: Lemma for algextdeg . The quotient P / Z of the vector space P of polynomials by the subspace Z of polynomials annihilating A is itself a vector space. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k K = E 𝑠 F
algextdeg.l L = E 𝑠 E fldGen F A
algextdeg.d D = deg 1 E
algextdeg.m M = E minPoly F
algextdeg.f φ E Field
algextdeg.e φ F SubDRing E
algextdeg.a φ A E IntgRing F
algextdeglem.o O = E evalSub 1 F
algextdeglem.y P = Poly 1 K
algextdeglem.u U = Base P
algextdeglem.g G = p U O p A
algextdeglem.n N = x U x P ~ QG Z
algextdeglem.z Z = G -1 0 L
algextdeglem.q Q = P / 𝑠 P ~ QG Z
algextdeglem.j J = p Base Q G p
Assertion algextdeglem3 φ Q LVec

Proof

Step Hyp Ref Expression
1 algextdeg.k K = E 𝑠 F
2 algextdeg.l L = E 𝑠 E fldGen F A
3 algextdeg.d D = deg 1 E
4 algextdeg.m M = E minPoly F
5 algextdeg.f φ E Field
6 algextdeg.e φ F SubDRing E
7 algextdeg.a φ A E IntgRing F
8 algextdeglem.o O = E evalSub 1 F
9 algextdeglem.y P = Poly 1 K
10 algextdeglem.u U = Base P
11 algextdeglem.g G = p U O p A
12 algextdeglem.n N = x U x P ~ QG Z
13 algextdeglem.z Z = G -1 0 L
14 algextdeglem.q Q = P / 𝑠 P ~ QG Z
15 algextdeglem.j J = p Base Q G p
16 1 fveq2i Poly 1 K = Poly 1 E 𝑠 F
17 9 16 eqtri P = Poly 1 E 𝑠 F
18 issdrg F SubDRing E E DivRing F SubRing E E 𝑠 F DivRing
19 6 18 sylib φ E DivRing F SubRing E E 𝑠 F DivRing
20 19 simp3d φ E 𝑠 F DivRing
21 17 20 ply1lvec φ P LVec
22 eqidd φ subringAlg L F = subringAlg L F
23 eqidd φ 0 L = 0 L
24 eqid Base E = Base E
25 5 flddrngd φ E DivRing
26 19 simp2d φ F SubRing E
27 subrgsubg F SubRing E F SubGrp E
28 24 subgss F SubGrp E F Base E
29 26 27 28 3syl φ F Base E
30 eqid 0 E = 0 E
31 5 fldcrngd φ E CRing
32 8 1 24 30 31 26 irngssv φ E IntgRing F Base E
33 32 7 sseldd φ A Base E
34 33 snssd φ A Base E
35 29 34 unssd φ F A Base E
36 24 25 35 fldgenssid φ F A E fldGen F A
37 36 unssad φ F E fldGen F A
38 24 25 35 fldgenssv φ E fldGen F A Base E
39 2 24 ressbas2 E fldGen F A Base E E fldGen F A = Base L
40 38 39 syl φ E fldGen F A = Base L
41 37 40 sseqtrd φ F Base L
42 22 23 41 sralmod0 φ 0 L = 0 subringAlg L F
43 42 sneqd φ 0 L = 0 subringAlg L F
44 43 imaeq2d φ G -1 0 L = G -1 0 subringAlg L F
45 13 44 eqtrid φ Z = G -1 0 subringAlg L F
46 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 algextdeglem2 φ G P LMHom subringAlg L F
47 eqid G -1 0 subringAlg L F = G -1 0 subringAlg L F
48 eqid 0 subringAlg L F = 0 subringAlg L F
49 eqid LSubSp P = LSubSp P
50 47 48 49 lmhmkerlss G P LMHom subringAlg L F G -1 0 subringAlg L F LSubSp P
51 46 50 syl φ G -1 0 subringAlg L F LSubSp P
52 45 51 eqeltrd φ Z LSubSp P
53 14 21 52 quslvec φ Q LVec