Metamath Proof Explorer


Theorem algextdeglem4

Description: Lemma for algextdeg . By lmhmqusker , the surjective module homomorphism G described in algextdeglem2 induces an isomorphism with the quotient space. Therefore, the dimension of that quotient space P / Z is the degree of the algebraic field extension. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k K = E 𝑠 F
algextdeg.l L = E 𝑠 E fldGen F A
algextdeg.d D = deg 1 E
algextdeg.m M = E minPoly F
algextdeg.f φ E Field
algextdeg.e φ F SubDRing E
algextdeg.a φ A E IntgRing F
algextdeglem.o O = E evalSub 1 F
algextdeglem.y P = Poly 1 K
algextdeglem.u U = Base P
algextdeglem.g G = p U O p A
algextdeglem.n N = x U x P ~ QG Z
algextdeglem.z Z = G -1 0 L
algextdeglem.q Q = P / 𝑠 P ~ QG Z
algextdeglem.j J = p Base Q G p
Assertion algextdeglem4 φ dim Q = L .:. K

Proof

Step Hyp Ref Expression
1 algextdeg.k K = E 𝑠 F
2 algextdeg.l L = E 𝑠 E fldGen F A
3 algextdeg.d D = deg 1 E
4 algextdeg.m M = E minPoly F
5 algextdeg.f φ E Field
6 algextdeg.e φ F SubDRing E
7 algextdeg.a φ A E IntgRing F
8 algextdeglem.o O = E evalSub 1 F
9 algextdeglem.y P = Poly 1 K
10 algextdeglem.u U = Base P
11 algextdeglem.g G = p U O p A
12 algextdeglem.n N = x U x P ~ QG Z
13 algextdeglem.z Z = G -1 0 L
14 algextdeglem.q Q = P / 𝑠 P ~ QG Z
15 algextdeglem.j J = p Base Q G p
16 issdrg F SubDRing E E DivRing F SubRing E E 𝑠 F DivRing
17 6 16 sylib φ E DivRing F SubRing E E 𝑠 F DivRing
18 17 simp2d φ F SubRing E
19 subrgsubg F SubRing E F SubGrp E
20 eqid Base E = Base E
21 20 subgss F SubGrp E F Base E
22 18 19 21 3syl φ F Base E
23 1 20 ressbas2 F Base E F = Base K
24 22 23 syl φ F = Base K
25 24 fveq2d φ subringAlg L F = subringAlg L Base K
26 25 fveq2d φ dim subringAlg L F = dim subringAlg L Base K
27 eqid 0 subringAlg L F = 0 subringAlg L F
28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 algextdeglem2 φ G P LMHom subringAlg L F
29 eqid G -1 0 subringAlg L F = G -1 0 subringAlg L F
30 eqid P / 𝑠 P ~ QG G -1 0 subringAlg L F = P / 𝑠 P ~ QG G -1 0 subringAlg L F
31 1 fveq2i Poly 1 K = Poly 1 E 𝑠 F
32 9 31 eqtri P = Poly 1 E 𝑠 F
33 5 adantr φ p U E Field
34 6 adantr φ p U F SubDRing E
35 eqid 0 E = 0 E
36 5 fldcrngd φ E CRing
37 8 1 20 35 36 18 irngssv φ E IntgRing F Base E
38 37 7 sseldd φ A Base E
39 38 adantr φ p U A Base E
40 simpr φ p U p U
41 20 8 32 10 33 34 39 40 evls1fldgencl φ p U O p A E fldGen F A
42 41 ralrimiva φ p U O p A E fldGen F A
43 11 rnmptss p U O p A E fldGen F A ran G E fldGen F A
44 42 43 syl φ ran G E fldGen F A
45 5 flddrngd φ E DivRing
46 8 32 20 10 36 18 38 11 evls1maprhm φ G P RingHom E
47 rnrhmsubrg G P RingHom E ran G SubRing E
48 46 47 syl φ ran G SubRing E
49 2 oveq1i L 𝑠 ran G = E 𝑠 E fldGen F A 𝑠 ran G
50 ovex E fldGen F A V
51 ressabs E fldGen F A V ran G E fldGen F A E 𝑠 E fldGen F A 𝑠 ran G = E 𝑠 ran G
52 50 44 51 sylancr φ E 𝑠 E fldGen F A 𝑠 ran G = E 𝑠 ran G
53 49 52 eqtrid φ L 𝑠 ran G = E 𝑠 ran G
54 eqid 0 L = 0 L
55 38 snssd φ A Base E
56 22 55 unssd φ F A Base E
57 20 45 56 fldgensdrg φ E fldGen F A SubDRing E
58 issdrg E fldGen F A SubDRing E E DivRing E fldGen F A SubRing E E 𝑠 E fldGen F A DivRing
59 57 58 sylib φ E DivRing E fldGen F A SubRing E E 𝑠 E fldGen F A DivRing
60 59 simp2d φ E fldGen F A SubRing E
61 2 resrhm2b E fldGen F A SubRing E ran G E fldGen F A G P RingHom E G P RingHom L
62 61 biimpa E fldGen F A SubRing E ran G E fldGen F A G P RingHom E G P RingHom L
63 60 44 46 62 syl21anc φ G P RingHom L
64 rhmghm G P RingHom L G P GrpHom L
65 63 64 syl φ G P GrpHom L
66 54 65 13 14 15 10 12 ghmquskerco φ G = J N
67 66 rneqd φ ran G = ran J N
68 14 a1i φ Q = P / 𝑠 P ~ QG Z
69 10 a1i φ U = Base P
70 ovexd φ P ~ QG Z V
71 17 simp3d φ E 𝑠 F DivRing
72 32 71 ply1lvec φ P LVec
73 68 69 70 72 qusbas φ U / P ~ QG Z = Base Q
74 eqid U / P ~ QG Z = U / P ~ QG Z
75 54 ghmker G P GrpHom L G -1 0 L NrmSGrp P
76 65 75 syl φ G -1 0 L NrmSGrp P
77 13 76 eqeltrid φ Z NrmSGrp P
78 10 74 12 77 qusrn φ ran N = U / P ~ QG Z
79 eqid subringAlg E F = subringAlg E F
80 8 32 20 10 36 18 38 11 79 evls1maplmhm φ G P LMHom subringAlg E F
81 80 elexd φ G V
82 81 adantr φ p Base Q G V
83 82 imaexd φ p Base Q G p V
84 83 uniexd φ p Base Q G p V
85 15 84 dmmptd φ dom J = Base Q
86 73 78 85 3eqtr4rd φ dom J = ran N
87 rncoeq dom J = ran N ran J N = ran J
88 86 87 syl φ ran J N = ran J
89 67 88 eqtrd φ ran G = ran J
90 89 oveq2d φ L 𝑠 ran G = L 𝑠 ran J
91 eqid L 𝑠 ran J = L 𝑠 ran J
92 1 subrgcrng E CRing F SubRing E K CRing
93 36 18 92 syl2anc φ K CRing
94 9 ply1crng K CRing P CRing
95 93 94 syl φ P CRing
96 54 63 13 14 15 95 rhmquskerlem φ J Q RingHom L
97 8 32 20 10 36 18 38 11 evls1maprnss φ F ran G
98 eqid 1 E = 1 E
99 1 98 subrg1 F SubRing E 1 E = 1 K
100 18 99 syl φ 1 E = 1 K
101 98 subrg1cl F SubRing E 1 E F
102 18 101 syl φ 1 E F
103 100 102 eqeltrrd φ 1 K F
104 97 103 sseldd φ 1 K ran G
105 drngnzr E DivRing E NzRing
106 98 35 nzrnz E NzRing 1 E 0 E
107 45 105 106 3syl φ 1 E 0 E
108 36 crnggrpd φ E Grp
109 108 grpmndd φ E Mnd
110 sdrgsubrg E fldGen F A SubDRing E E fldGen F A SubRing E
111 subrgsubg E fldGen F A SubRing E E fldGen F A SubGrp E
112 57 110 111 3syl φ E fldGen F A SubGrp E
113 35 subg0cl E fldGen F A SubGrp E 0 E E fldGen F A
114 112 113 syl φ 0 E E fldGen F A
115 20 45 56 fldgenssv φ E fldGen F A Base E
116 2 20 35 ress0g E Mnd 0 E E fldGen F A E fldGen F A Base E 0 E = 0 L
117 109 114 115 116 syl3anc φ 0 E = 0 L
118 107 100 117 3netr3d φ 1 K 0 L
119 nelsn 1 K 0 L ¬ 1 K 0 L
120 118 119 syl φ ¬ 1 K 0 L
121 nelne1 1 K ran G ¬ 1 K 0 L ran G 0 L
122 104 120 121 syl2anc φ ran G 0 L
123 89 122 eqnetrrd φ ran J 0 L
124 eqid opp r P = opp r P
125 1 sdrgdrng F SubDRing E K DivRing
126 drngnzr K DivRing K NzRing
127 6 125 126 3syl φ K NzRing
128 9 ply1nz K NzRing P NzRing
129 127 128 syl φ P NzRing
130 eqid q dom O | O q A = 0 E = q dom O | O q A = 0 E
131 eqid RSpan P = RSpan P
132 1 fveq2i idlGen 1p K = idlGen 1p E 𝑠 F
133 8 32 20 5 6 38 35 130 131 132 ply1annig1p φ q dom O | O q A = 0 E = RSpan P idlGen 1p K q dom O | O q A = 0 E
134 117 sneqd φ 0 E = 0 L
135 134 imaeq2d φ G -1 0 E = G -1 0 L
136 13 135 eqtr4id φ Z = G -1 0 E
137 10 mpteq1i p U O p A = p Base P O p A
138 11 137 eqtri G = p Base P O p A
139 8 32 20 36 18 38 35 130 138 ply1annidllem φ q dom O | O q A = 0 E = G -1 0 E
140 136 139 eqtr4d φ Z = q dom O | O q A = 0 E
141 eqid E minPoly F = E minPoly F
142 8 32 20 5 6 38 35 130 131 132 141 minplyval φ E minPoly F A = idlGen 1p K q dom O | O q A = 0 E
143 142 sneqd φ E minPoly F A = idlGen 1p K q dom O | O q A = 0 E
144 143 fveq2d φ RSpan P E minPoly F A = RSpan P idlGen 1p K q dom O | O q A = 0 E
145 133 140 144 3eqtr4d φ Z = RSpan P E minPoly F A
146 eqid 0 P = 0 P
147 eqid 0 Poly 1 E = 0 Poly 1 E
148 147 5 6 141 7 irngnminplynz φ E minPoly F A 0 Poly 1 E
149 eqid Poly 1 E = Poly 1 E
150 149 1 9 10 18 147 ressply10g φ 0 Poly 1 E = 0 P
151 148 150 neeqtrd φ E minPoly F A 0 P
152 8 32 20 5 6 38 141 146 151 minplyirred φ E minPoly F A Irred P
153 eqid RSpan P E minPoly F A = RSpan P E minPoly F A
154 fldsdrgfld E Field F SubDRing E E 𝑠 F Field
155 5 6 154 syl2anc φ E 𝑠 F Field
156 1 155 eqeltrid φ K Field
157 9 ply1pid K Field P PID
158 156 157 syl φ P PID
159 8 32 20 5 6 38 35 130 131 132 141 minplycl φ E minPoly F A Base P
160 159 10 eleqtrrdi φ E minPoly F A U
161 95 crngringd φ P Ring
162 160 snssd φ E minPoly F A U
163 eqid LIdeal P = LIdeal P
164 131 10 163 rspcl P Ring E minPoly F A U RSpan P E minPoly F A LIdeal P
165 161 162 164 syl2anc φ RSpan P E minPoly F A LIdeal P
166 10 131 146 153 158 160 151 165 mxidlirred φ RSpan P E minPoly F A MaxIdeal P E minPoly F A Irred P
167 152 166 mpbird φ RSpan P E minPoly F A MaxIdeal P
168 145 167 eqeltrd φ Z MaxIdeal P
169 eqid MaxIdeal P = MaxIdeal P
170 169 124 crngmxidl P CRing MaxIdeal P = MaxIdeal opp r P
171 95 170 syl φ MaxIdeal P = MaxIdeal opp r P
172 168 171 eleqtrd φ Z MaxIdeal opp r P
173 124 14 129 168 172 qsdrngi φ Q DivRing
174 91 54 96 123 173 rndrhmcl φ L 𝑠 ran J DivRing
175 90 174 eqeltrd φ L 𝑠 ran G DivRing
176 53 175 eqeltrrd φ E 𝑠 ran G DivRing
177 issdrg ran G SubDRing E E DivRing ran G SubRing E E 𝑠 ran G DivRing
178 45 48 176 177 syl3anbrc φ ran G SubDRing E
179 fveq2 p = var 1 K O p = O var 1 K
180 179 fveq1d p = var 1 K O p A = O var 1 K A
181 180 eqeq2d p = var 1 K A = O p A A = O var 1 K A
182 1 71 eqeltrid φ K DivRing
183 182 drngringd φ K Ring
184 eqid var 1 K = var 1 K
185 184 9 10 vr1cl K Ring var 1 K U
186 183 185 syl φ var 1 K U
187 8 184 1 20 36 18 evls1var φ O var 1 K = I Base E
188 187 fveq1d φ O var 1 K A = I Base E A
189 fvresi A Base E I Base E A = A
190 38 189 syl φ I Base E A = A
191 188 190 eqtr2d φ A = O var 1 K A
192 181 186 191 rspcedvdw φ p U A = O p A
193 11 192 7 elrnmptd φ A ran G
194 193 snssd φ A ran G
195 97 194 unssd φ F A ran G
196 20 45 178 195 fldgenssp φ E fldGen F A ran G
197 44 196 eqssd φ ran G = E fldGen F A
198 2 20 ressbas2 E fldGen F A Base E E fldGen F A = Base L
199 115 198 syl φ E fldGen F A = Base L
200 eqidd φ subringAlg L F = subringAlg L F
201 20 45 56 fldgenssid φ F A E fldGen F A
202 201 unssad φ F E fldGen F A
203 202 199 sseqtrd φ F Base L
204 200 203 srabase φ Base L = Base subringAlg L F
205 197 199 204 3eqtrd φ ran G = Base subringAlg L F
206 imaeq2 q = p G q = G p
207 206 unieqd q = p G q = G p
208 207 cbvmptv q Base P / 𝑠 P ~ QG G -1 0 subringAlg L F G q = p Base P / 𝑠 P ~ QG G -1 0 subringAlg L F G p
209 27 28 29 30 205 208 lmhmqusker φ q Base P / 𝑠 P ~ QG G -1 0 subringAlg L F G q P / 𝑠 P ~ QG G -1 0 subringAlg L F LMIso subringAlg L F
210 eqidd φ 0 L = 0 L
211 200 210 203 sralmod0 φ 0 L = 0 subringAlg L F
212 211 sneqd φ 0 L = 0 subringAlg L F
213 212 imaeq2d φ G -1 0 L = G -1 0 subringAlg L F
214 13 213 eqtrid φ Z = G -1 0 subringAlg L F
215 214 oveq2d φ P ~ QG Z = P ~ QG G -1 0 subringAlg L F
216 215 oveq2d φ P / 𝑠 P ~ QG Z = P / 𝑠 P ~ QG G -1 0 subringAlg L F
217 14 216 eqtrid φ Q = P / 𝑠 P ~ QG G -1 0 subringAlg L F
218 217 fveq2d φ Base Q = Base P / 𝑠 P ~ QG G -1 0 subringAlg L F
219 218 mpteq1d φ p Base Q G p = p Base P / 𝑠 P ~ QG G -1 0 subringAlg L F G p
220 219 15 208 3eqtr4g φ J = q Base P / 𝑠 P ~ QG G -1 0 subringAlg L F G q
221 217 oveq1d φ Q LMIso subringAlg L F = P / 𝑠 P ~ QG G -1 0 subringAlg L F LMIso subringAlg L F
222 209 220 221 3eltr4d φ J Q LMIso subringAlg L F
223 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 algextdeglem3 φ Q LVec
224 222 223 lmimdim φ dim Q = dim subringAlg L F
225 20 5 56 fldgenfld φ E 𝑠 E fldGen F A Field
226 2 225 eqeltrid φ L Field
227 1 2 3 4 5 6 7 algextdeglem1 φ L 𝑠 F = K
228 24 oveq2d φ L 𝑠 F = L 𝑠 Base K
229 227 228 eqtr3d φ K = L 𝑠 Base K
230 2 subsubrg E fldGen F A SubRing E F SubRing L F SubRing E F E fldGen F A
231 230 biimpar E fldGen F A SubRing E F SubRing E F E fldGen F A F SubRing L
232 60 18 202 231 syl12anc φ F SubRing L
233 24 232 eqeltrrd φ Base K SubRing L
234 brfldext L Field K Field L /FldExt K K = L 𝑠 Base K Base K SubRing L
235 234 biimpar L Field K Field K = L 𝑠 Base K Base K SubRing L L /FldExt K
236 226 156 229 233 235 syl22anc φ L /FldExt K
237 extdgval L /FldExt K L .:. K = dim subringAlg L Base K
238 236 237 syl φ L .:. K = dim subringAlg L Base K
239 26 224 238 3eqtr4d φ dim Q = L .:. K