Metamath Proof Explorer


Theorem resrhm2b

Description: Restriction of the codomain of a (ring) homomorphism. resghm2b analog. (Contributed by SN, 7-Feb-2025)

Ref Expression
Hypothesis resrhm2b.u U=T𝑠X
Assertion resrhm2b XSubRingTranFXFSRingHomTFSRingHomU

Proof

Step Hyp Ref Expression
1 resrhm2b.u U=T𝑠X
2 subrgsubg XSubRingTXSubGrpT
3 1 resghm2b XSubGrpTranFXFSGrpHomTFSGrpHomU
4 2 3 sylan XSubRingTranFXFSGrpHomTFSGrpHomU
5 eqid mulGrpT=mulGrpT
6 5 subrgsubm XSubRingTXSubMndmulGrpT
7 eqid mulGrpT𝑠X=mulGrpT𝑠X
8 7 resmhm2b XSubMndmulGrpTranFXFmulGrpSMndHommulGrpTFmulGrpSMndHommulGrpT𝑠X
9 6 8 sylan XSubRingTranFXFmulGrpSMndHommulGrpTFmulGrpSMndHommulGrpT𝑠X
10 subrgrcl XSubRingTTRing
11 1 5 mgpress TRingXSubRingTmulGrpT𝑠X=mulGrpU
12 10 11 mpancom XSubRingTmulGrpT𝑠X=mulGrpU
13 12 adantr XSubRingTranFXmulGrpT𝑠X=mulGrpU
14 13 oveq2d XSubRingTranFXmulGrpSMndHommulGrpT𝑠X=mulGrpSMndHommulGrpU
15 14 eleq2d XSubRingTranFXFmulGrpSMndHommulGrpT𝑠XFmulGrpSMndHommulGrpU
16 9 15 bitrd XSubRingTranFXFmulGrpSMndHommulGrpTFmulGrpSMndHommulGrpU
17 4 16 anbi12d XSubRingTranFXFSGrpHomTFmulGrpSMndHommulGrpTFSGrpHomUFmulGrpSMndHommulGrpU
18 17 anbi2d XSubRingTranFXSRingFSGrpHomTFmulGrpSMndHommulGrpTSRingFSGrpHomUFmulGrpSMndHommulGrpU
19 10 adantr XSubRingTranFXTRing
20 19 biantrud XSubRingTranFXSRingSRingTRing
21 20 anbi1d XSubRingTranFXSRingFSGrpHomTFmulGrpSMndHommulGrpTSRingTRingFSGrpHomTFmulGrpSMndHommulGrpT
22 1 subrgring XSubRingTURing
23 22 adantr XSubRingTranFXURing
24 23 biantrud XSubRingTranFXSRingSRingURing
25 24 anbi1d XSubRingTranFXSRingFSGrpHomUFmulGrpSMndHommulGrpUSRingURingFSGrpHomUFmulGrpSMndHommulGrpU
26 18 21 25 3bitr3d XSubRingTranFXSRingTRingFSGrpHomTFmulGrpSMndHommulGrpTSRingURingFSGrpHomUFmulGrpSMndHommulGrpU
27 eqid mulGrpS=mulGrpS
28 27 5 isrhm FSRingHomTSRingTRingFSGrpHomTFmulGrpSMndHommulGrpT
29 eqid mulGrpU=mulGrpU
30 27 29 isrhm FSRingHomUSRingURingFSGrpHomUFmulGrpSMndHommulGrpU
31 26 28 30 3bitr4g XSubRingTranFXFSRingHomTFSRingHomU