Metamath Proof Explorer


Theorem rhmeql

Description: The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion rhmeql FSRingHomTGSRingHomTdomFGSubRingS

Proof

Step Hyp Ref Expression
1 rhmghm FSRingHomTFSGrpHomT
2 rhmghm GSRingHomTGSGrpHomT
3 ghmeql FSGrpHomTGSGrpHomTdomFGSubGrpS
4 1 2 3 syl2an FSRingHomTGSRingHomTdomFGSubGrpS
5 eqid mulGrpS=mulGrpS
6 eqid mulGrpT=mulGrpT
7 5 6 rhmmhm FSRingHomTFmulGrpSMndHommulGrpT
8 5 6 rhmmhm GSRingHomTGmulGrpSMndHommulGrpT
9 mhmeql FmulGrpSMndHommulGrpTGmulGrpSMndHommulGrpTdomFGSubMndmulGrpS
10 7 8 9 syl2an FSRingHomTGSRingHomTdomFGSubMndmulGrpS
11 rhmrcl1 FSRingHomTSRing
12 11 adantr FSRingHomTGSRingHomTSRing
13 5 issubrg3 SRingdomFGSubRingSdomFGSubGrpSdomFGSubMndmulGrpS
14 12 13 syl FSRingHomTGSRingHomTdomFGSubRingSdomFGSubGrpSdomFGSubMndmulGrpS
15 4 10 14 mpbir2and FSRingHomTGSRingHomTdomFGSubRingS