Description: The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ghmeql | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmmhm | |
|
2 | ghmmhm | |
|
3 | mhmeql | |
|
4 | 1 2 3 | syl2an | |
5 | fveq2 | |
|
6 | fveq2 | |
|
7 | 5 6 | eqeq12d | |
8 | ghmgrp1 | |
|
9 | 8 | adantr | |
10 | 9 | adantr | |
11 | simprl | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | 12 13 | grpinvcl | |
15 | 10 11 14 | syl2anc | |
16 | simprr | |
|
17 | 16 | fveq2d | |
18 | eqid | |
|
19 | 12 13 18 | ghminv | |
20 | 19 | ad2ant2r | |
21 | 12 13 18 | ghminv | |
22 | 21 | ad2ant2lr | |
23 | 17 20 22 | 3eqtr4d | |
24 | 7 15 23 | elrabd | |
25 | 24 | expr | |
26 | 25 | ralrimiva | |
27 | fveq2 | |
|
28 | fveq2 | |
|
29 | 27 28 | eqeq12d | |
30 | 29 | ralrab | |
31 | 26 30 | sylibr | |
32 | eqid | |
|
33 | 12 32 | ghmf | |
34 | 33 | adantr | |
35 | 34 | ffnd | |
36 | 12 32 | ghmf | |
37 | 36 | adantl | |
38 | 37 | ffnd | |
39 | fndmin | |
|
40 | 35 38 39 | syl2anc | |
41 | eleq2 | |
|
42 | 41 | raleqbi1dv | |
43 | 40 42 | syl | |
44 | 31 43 | mpbird | |
45 | 13 | issubg3 | |
46 | 9 45 | syl | |
47 | 4 44 46 | mpbir2and | |