| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmmhm |
|
| 2 |
|
ghmmhm |
|
| 3 |
|
mhmeql |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
|
fveq2 |
|
| 6 |
|
fveq2 |
|
| 7 |
5 6
|
eqeq12d |
|
| 8 |
|
ghmgrp1 |
|
| 9 |
8
|
adantr |
|
| 10 |
9
|
adantr |
|
| 11 |
|
simprl |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
12 13
|
grpinvcl |
|
| 15 |
10 11 14
|
syl2anc |
|
| 16 |
|
simprr |
|
| 17 |
16
|
fveq2d |
|
| 18 |
|
eqid |
|
| 19 |
12 13 18
|
ghminv |
|
| 20 |
19
|
ad2ant2r |
|
| 21 |
12 13 18
|
ghminv |
|
| 22 |
21
|
ad2ant2lr |
|
| 23 |
17 20 22
|
3eqtr4d |
|
| 24 |
7 15 23
|
elrabd |
|
| 25 |
24
|
expr |
|
| 26 |
25
|
ralrimiva |
|
| 27 |
|
fveq2 |
|
| 28 |
|
fveq2 |
|
| 29 |
27 28
|
eqeq12d |
|
| 30 |
29
|
ralrab |
|
| 31 |
26 30
|
sylibr |
|
| 32 |
|
eqid |
|
| 33 |
12 32
|
ghmf |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
ffnd |
|
| 36 |
12 32
|
ghmf |
|
| 37 |
36
|
adantl |
|
| 38 |
37
|
ffnd |
|
| 39 |
|
fndmin |
|
| 40 |
35 38 39
|
syl2anc |
|
| 41 |
|
eleq2 |
|
| 42 |
41
|
raleqbi1dv |
|
| 43 |
40 42
|
syl |
|
| 44 |
31 43
|
mpbird |
|
| 45 |
13
|
issubg3 |
|
| 46 |
9 45
|
syl |
|
| 47 |
4 44 46
|
mpbir2and |
|