Metamath Proof Explorer


Theorem ghmeql

Description: The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion ghmeql FSGrpHomTGSGrpHomTdomFGSubGrpS

Proof

Step Hyp Ref Expression
1 ghmmhm FSGrpHomTFSMndHomT
2 ghmmhm GSGrpHomTGSMndHomT
3 mhmeql FSMndHomTGSMndHomTdomFGSubMndS
4 1 2 3 syl2an FSGrpHomTGSGrpHomTdomFGSubMndS
5 fveq2 y=invgSxFy=FinvgSx
6 fveq2 y=invgSxGy=GinvgSx
7 5 6 eqeq12d y=invgSxFy=GyFinvgSx=GinvgSx
8 ghmgrp1 FSGrpHomTSGrp
9 8 adantr FSGrpHomTGSGrpHomTSGrp
10 9 adantr FSGrpHomTGSGrpHomTxBaseSFx=GxSGrp
11 simprl FSGrpHomTGSGrpHomTxBaseSFx=GxxBaseS
12 eqid BaseS=BaseS
13 eqid invgS=invgS
14 12 13 grpinvcl SGrpxBaseSinvgSxBaseS
15 10 11 14 syl2anc FSGrpHomTGSGrpHomTxBaseSFx=GxinvgSxBaseS
16 simprr FSGrpHomTGSGrpHomTxBaseSFx=GxFx=Gx
17 16 fveq2d FSGrpHomTGSGrpHomTxBaseSFx=GxinvgTFx=invgTGx
18 eqid invgT=invgT
19 12 13 18 ghminv FSGrpHomTxBaseSFinvgSx=invgTFx
20 19 ad2ant2r FSGrpHomTGSGrpHomTxBaseSFx=GxFinvgSx=invgTFx
21 12 13 18 ghminv GSGrpHomTxBaseSGinvgSx=invgTGx
22 21 ad2ant2lr FSGrpHomTGSGrpHomTxBaseSFx=GxGinvgSx=invgTGx
23 17 20 22 3eqtr4d FSGrpHomTGSGrpHomTxBaseSFx=GxFinvgSx=GinvgSx
24 7 15 23 elrabd FSGrpHomTGSGrpHomTxBaseSFx=GxinvgSxyBaseS|Fy=Gy
25 24 expr FSGrpHomTGSGrpHomTxBaseSFx=GxinvgSxyBaseS|Fy=Gy
26 25 ralrimiva FSGrpHomTGSGrpHomTxBaseSFx=GxinvgSxyBaseS|Fy=Gy
27 fveq2 y=xFy=Fx
28 fveq2 y=xGy=Gx
29 27 28 eqeq12d y=xFy=GyFx=Gx
30 29 ralrab xyBaseS|Fy=GyinvgSxyBaseS|Fy=GyxBaseSFx=GxinvgSxyBaseS|Fy=Gy
31 26 30 sylibr FSGrpHomTGSGrpHomTxyBaseS|Fy=GyinvgSxyBaseS|Fy=Gy
32 eqid BaseT=BaseT
33 12 32 ghmf FSGrpHomTF:BaseSBaseT
34 33 adantr FSGrpHomTGSGrpHomTF:BaseSBaseT
35 34 ffnd FSGrpHomTGSGrpHomTFFnBaseS
36 12 32 ghmf GSGrpHomTG:BaseSBaseT
37 36 adantl FSGrpHomTGSGrpHomTG:BaseSBaseT
38 37 ffnd FSGrpHomTGSGrpHomTGFnBaseS
39 fndmin FFnBaseSGFnBaseSdomFG=yBaseS|Fy=Gy
40 35 38 39 syl2anc FSGrpHomTGSGrpHomTdomFG=yBaseS|Fy=Gy
41 eleq2 domFG=yBaseS|Fy=GyinvgSxdomFGinvgSxyBaseS|Fy=Gy
42 41 raleqbi1dv domFG=yBaseS|Fy=GyxdomFGinvgSxdomFGxyBaseS|Fy=GyinvgSxyBaseS|Fy=Gy
43 40 42 syl FSGrpHomTGSGrpHomTxdomFGinvgSxdomFGxyBaseS|Fy=GyinvgSxyBaseS|Fy=Gy
44 31 43 mpbird FSGrpHomTGSGrpHomTxdomFGinvgSxdomFG
45 13 issubg3 SGrpdomFGSubGrpSdomFGSubMndSxdomFGinvgSxdomFG
46 9 45 syl FSGrpHomTGSGrpHomTdomFGSubGrpSdomFGSubMndSxdomFGinvgSxdomFG
47 4 44 46 mpbir2and FSGrpHomTGSGrpHomTdomFGSubGrpS