Step |
Hyp |
Ref |
Expression |
1 |
|
ghmmhm |
|- ( F e. ( S GrpHom T ) -> F e. ( S MndHom T ) ) |
2 |
|
ghmmhm |
|- ( G e. ( S GrpHom T ) -> G e. ( S MndHom T ) ) |
3 |
|
mhmeql |
|- ( ( F e. ( S MndHom T ) /\ G e. ( S MndHom T ) ) -> dom ( F i^i G ) e. ( SubMnd ` S ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) e. ( SubMnd ` S ) ) |
5 |
|
fveq2 |
|- ( y = ( ( invg ` S ) ` x ) -> ( F ` y ) = ( F ` ( ( invg ` S ) ` x ) ) ) |
6 |
|
fveq2 |
|- ( y = ( ( invg ` S ) ` x ) -> ( G ` y ) = ( G ` ( ( invg ` S ) ` x ) ) ) |
7 |
5 6
|
eqeq12d |
|- ( y = ( ( invg ` S ) ` x ) -> ( ( F ` y ) = ( G ` y ) <-> ( F ` ( ( invg ` S ) ` x ) ) = ( G ` ( ( invg ` S ) ` x ) ) ) ) |
8 |
|
ghmgrp1 |
|- ( F e. ( S GrpHom T ) -> S e. Grp ) |
9 |
8
|
adantr |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> S e. Grp ) |
10 |
9
|
adantr |
|- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> S e. Grp ) |
11 |
|
simprl |
|- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> x e. ( Base ` S ) ) |
12 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
13 |
|
eqid |
|- ( invg ` S ) = ( invg ` S ) |
14 |
12 13
|
grpinvcl |
|- ( ( S e. Grp /\ x e. ( Base ` S ) ) -> ( ( invg ` S ) ` x ) e. ( Base ` S ) ) |
15 |
10 11 14
|
syl2anc |
|- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( ( invg ` S ) ` x ) e. ( Base ` S ) ) |
16 |
|
simprr |
|- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( F ` x ) = ( G ` x ) ) |
17 |
16
|
fveq2d |
|- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( ( invg ` T ) ` ( F ` x ) ) = ( ( invg ` T ) ` ( G ` x ) ) ) |
18 |
|
eqid |
|- ( invg ` T ) = ( invg ` T ) |
19 |
12 13 18
|
ghminv |
|- ( ( F e. ( S GrpHom T ) /\ x e. ( Base ` S ) ) -> ( F ` ( ( invg ` S ) ` x ) ) = ( ( invg ` T ) ` ( F ` x ) ) ) |
20 |
19
|
ad2ant2r |
|- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( F ` ( ( invg ` S ) ` x ) ) = ( ( invg ` T ) ` ( F ` x ) ) ) |
21 |
12 13 18
|
ghminv |
|- ( ( G e. ( S GrpHom T ) /\ x e. ( Base ` S ) ) -> ( G ` ( ( invg ` S ) ` x ) ) = ( ( invg ` T ) ` ( G ` x ) ) ) |
22 |
21
|
ad2ant2lr |
|- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( G ` ( ( invg ` S ) ` x ) ) = ( ( invg ` T ) ` ( G ` x ) ) ) |
23 |
17 20 22
|
3eqtr4d |
|- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( F ` ( ( invg ` S ) ` x ) ) = ( G ` ( ( invg ` S ) ` x ) ) ) |
24 |
7 15 23
|
elrabd |
|- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ ( x e. ( Base ` S ) /\ ( F ` x ) = ( G ` x ) ) ) -> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) |
25 |
24
|
expr |
|- ( ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) /\ x e. ( Base ` S ) ) -> ( ( F ` x ) = ( G ` x ) -> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) |
26 |
25
|
ralrimiva |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> A. x e. ( Base ` S ) ( ( F ` x ) = ( G ` x ) -> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) |
27 |
|
fveq2 |
|- ( y = x -> ( F ` y ) = ( F ` x ) ) |
28 |
|
fveq2 |
|- ( y = x -> ( G ` y ) = ( G ` x ) ) |
29 |
27 28
|
eqeq12d |
|- ( y = x -> ( ( F ` y ) = ( G ` y ) <-> ( F ` x ) = ( G ` x ) ) ) |
30 |
29
|
ralrab |
|- ( A. x e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } <-> A. x e. ( Base ` S ) ( ( F ` x ) = ( G ` x ) -> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) |
31 |
26 30
|
sylibr |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> A. x e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) |
32 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
33 |
12 32
|
ghmf |
|- ( F e. ( S GrpHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
34 |
33
|
adantr |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
35 |
34
|
ffnd |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> F Fn ( Base ` S ) ) |
36 |
12 32
|
ghmf |
|- ( G e. ( S GrpHom T ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
37 |
36
|
adantl |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> G : ( Base ` S ) --> ( Base ` T ) ) |
38 |
37
|
ffnd |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> G Fn ( Base ` S ) ) |
39 |
|
fndmin |
|- ( ( F Fn ( Base ` S ) /\ G Fn ( Base ` S ) ) -> dom ( F i^i G ) = { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) |
40 |
35 38 39
|
syl2anc |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) = { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) |
41 |
|
eleq2 |
|- ( dom ( F i^i G ) = { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } -> ( ( ( invg ` S ) ` x ) e. dom ( F i^i G ) <-> ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) |
42 |
41
|
raleqbi1dv |
|- ( dom ( F i^i G ) = { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } -> ( A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) <-> A. x e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) |
43 |
40 42
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> ( A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) <-> A. x e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ( ( invg ` S ) ` x ) e. { y e. ( Base ` S ) | ( F ` y ) = ( G ` y ) } ) ) |
44 |
31 43
|
mpbird |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) ) |
45 |
13
|
issubg3 |
|- ( S e. Grp -> ( dom ( F i^i G ) e. ( SubGrp ` S ) <-> ( dom ( F i^i G ) e. ( SubMnd ` S ) /\ A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) ) ) ) |
46 |
9 45
|
syl |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> ( dom ( F i^i G ) e. ( SubGrp ` S ) <-> ( dom ( F i^i G ) e. ( SubMnd ` S ) /\ A. x e. dom ( F i^i G ) ( ( invg ` S ) ` x ) e. dom ( F i^i G ) ) ) ) |
47 |
4 44 46
|
mpbir2and |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) |