Description: The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | mhmeql | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | mhmf | |
4 | 3 | adantr | |
5 | 4 | ffnd | |
6 | 1 2 | mhmf | |
7 | 6 | adantl | |
8 | 7 | ffnd | |
9 | fndmin | |
|
10 | 5 8 9 | syl2anc | |
11 | ssrab2 | |
|
12 | 11 | a1i | |
13 | fveq2 | |
|
14 | fveq2 | |
|
15 | 13 14 | eqeq12d | |
16 | mhmrcl1 | |
|
17 | 16 | adantr | |
18 | eqid | |
|
19 | 1 18 | mndidcl | |
20 | 17 19 | syl | |
21 | eqid | |
|
22 | 18 21 | mhm0 | |
23 | 22 | adantr | |
24 | 18 21 | mhm0 | |
25 | 24 | adantl | |
26 | 23 25 | eqtr4d | |
27 | 15 20 26 | elrabd | |
28 | fveq2 | |
|
29 | fveq2 | |
|
30 | 28 29 | eqeq12d | |
31 | 17 | ad2antrr | |
32 | simplrl | |
|
33 | simprl | |
|
34 | eqid | |
|
35 | 1 34 | mndcl | |
36 | 31 32 33 35 | syl3anc | |
37 | simplll | |
|
38 | eqid | |
|
39 | 1 34 38 | mhmlin | |
40 | 37 32 33 39 | syl3anc | |
41 | simpllr | |
|
42 | 1 34 38 | mhmlin | |
43 | 41 32 33 42 | syl3anc | |
44 | simplrr | |
|
45 | simprr | |
|
46 | 44 45 | oveq12d | |
47 | 43 46 | eqtr4d | |
48 | 40 47 | eqtr4d | |
49 | 30 36 48 | elrabd | |
50 | 49 | expr | |
51 | 50 | ralrimiva | |
52 | fveq2 | |
|
53 | fveq2 | |
|
54 | 52 53 | eqeq12d | |
55 | 54 | ralrab | |
56 | 51 55 | sylibr | |
57 | 56 | expr | |
58 | 57 | ralrimiva | |
59 | fveq2 | |
|
60 | fveq2 | |
|
61 | 59 60 | eqeq12d | |
62 | 61 | ralrab | |
63 | 58 62 | sylibr | |
64 | 1 18 34 | issubm | |
65 | 17 64 | syl | |
66 | 12 27 63 65 | mpbir3and | |
67 | 10 66 | eqeltrd | |