Metamath Proof Explorer


Theorem mhmeql

Description: The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion mhmeql FSMndHomTGSMndHomTdomFGSubMndS

Proof

Step Hyp Ref Expression
1 eqid BaseS=BaseS
2 eqid BaseT=BaseT
3 1 2 mhmf FSMndHomTF:BaseSBaseT
4 3 adantr FSMndHomTGSMndHomTF:BaseSBaseT
5 4 ffnd FSMndHomTGSMndHomTFFnBaseS
6 1 2 mhmf GSMndHomTG:BaseSBaseT
7 6 adantl FSMndHomTGSMndHomTG:BaseSBaseT
8 7 ffnd FSMndHomTGSMndHomTGFnBaseS
9 fndmin FFnBaseSGFnBaseSdomFG=zBaseS|Fz=Gz
10 5 8 9 syl2anc FSMndHomTGSMndHomTdomFG=zBaseS|Fz=Gz
11 ssrab2 zBaseS|Fz=GzBaseS
12 11 a1i FSMndHomTGSMndHomTzBaseS|Fz=GzBaseS
13 fveq2 z=0SFz=F0S
14 fveq2 z=0SGz=G0S
15 13 14 eqeq12d z=0SFz=GzF0S=G0S
16 mhmrcl1 FSMndHomTSMnd
17 16 adantr FSMndHomTGSMndHomTSMnd
18 eqid 0S=0S
19 1 18 mndidcl SMnd0SBaseS
20 17 19 syl FSMndHomTGSMndHomT0SBaseS
21 eqid 0T=0T
22 18 21 mhm0 FSMndHomTF0S=0T
23 22 adantr FSMndHomTGSMndHomTF0S=0T
24 18 21 mhm0 GSMndHomTG0S=0T
25 24 adantl FSMndHomTGSMndHomTG0S=0T
26 23 25 eqtr4d FSMndHomTGSMndHomTF0S=G0S
27 15 20 26 elrabd FSMndHomTGSMndHomT0SzBaseS|Fz=Gz
28 fveq2 z=x+SyFz=Fx+Sy
29 fveq2 z=x+SyGz=Gx+Sy
30 28 29 eqeq12d z=x+SyFz=GzFx+Sy=Gx+Sy
31 17 ad2antrr FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=GySMnd
32 simplrl FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=GyxBaseS
33 simprl FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=GyyBaseS
34 eqid +S=+S
35 1 34 mndcl SMndxBaseSyBaseSx+SyBaseS
36 31 32 33 35 syl3anc FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=Gyx+SyBaseS
37 simplll FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=GyFSMndHomT
38 eqid +T=+T
39 1 34 38 mhmlin FSMndHomTxBaseSyBaseSFx+Sy=Fx+TFy
40 37 32 33 39 syl3anc FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=GyFx+Sy=Fx+TFy
41 simpllr FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=GyGSMndHomT
42 1 34 38 mhmlin GSMndHomTxBaseSyBaseSGx+Sy=Gx+TGy
43 41 32 33 42 syl3anc FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=GyGx+Sy=Gx+TGy
44 simplrr FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=GyFx=Gx
45 simprr FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=GyFy=Gy
46 44 45 oveq12d FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=GyFx+TFy=Gx+TGy
47 43 46 eqtr4d FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=GyGx+Sy=Fx+TFy
48 40 47 eqtr4d FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=GyFx+Sy=Gx+Sy
49 30 36 48 elrabd FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=Gyx+SyzBaseS|Fz=Gz
50 49 expr FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=Gyx+SyzBaseS|Fz=Gz
51 50 ralrimiva FSMndHomTGSMndHomTxBaseSFx=GxyBaseSFy=Gyx+SyzBaseS|Fz=Gz
52 fveq2 z=yFz=Fy
53 fveq2 z=yGz=Gy
54 52 53 eqeq12d z=yFz=GzFy=Gy
55 54 ralrab yzBaseS|Fz=Gzx+SyzBaseS|Fz=GzyBaseSFy=Gyx+SyzBaseS|Fz=Gz
56 51 55 sylibr FSMndHomTGSMndHomTxBaseSFx=GxyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
57 56 expr FSMndHomTGSMndHomTxBaseSFx=GxyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
58 57 ralrimiva FSMndHomTGSMndHomTxBaseSFx=GxyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
59 fveq2 z=xFz=Fx
60 fveq2 z=xGz=Gx
61 59 60 eqeq12d z=xFz=GzFx=Gx
62 61 ralrab xzBaseS|Fz=GzyzBaseS|Fz=Gzx+SyzBaseS|Fz=GzxBaseSFx=GxyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
63 58 62 sylibr FSMndHomTGSMndHomTxzBaseS|Fz=GzyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
64 1 18 34 issubm SMndzBaseS|Fz=GzSubMndSzBaseS|Fz=GzBaseS0SzBaseS|Fz=GzxzBaseS|Fz=GzyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
65 17 64 syl FSMndHomTGSMndHomTzBaseS|Fz=GzSubMndSzBaseS|Fz=GzBaseS0SzBaseS|Fz=GzxzBaseS|Fz=GzyzBaseS|Fz=Gzx+SyzBaseS|Fz=Gz
66 12 27 63 65 mpbir3and FSMndHomTGSMndHomTzBaseS|Fz=GzSubMndS
67 10 66 eqeltrd FSMndHomTGSMndHomTdomFGSubMndS