| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmghm |
|- ( F e. ( S RingHom T ) -> F e. ( S GrpHom T ) ) |
| 2 |
|
rhmghm |
|- ( G e. ( S RingHom T ) -> G e. ( S GrpHom T ) ) |
| 3 |
|
ghmeql |
|- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) |
| 5 |
|
eqid |
|- ( mulGrp ` S ) = ( mulGrp ` S ) |
| 6 |
|
eqid |
|- ( mulGrp ` T ) = ( mulGrp ` T ) |
| 7 |
5 6
|
rhmmhm |
|- ( F e. ( S RingHom T ) -> F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
| 8 |
5 6
|
rhmmhm |
|- ( G e. ( S RingHom T ) -> G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
| 9 |
|
mhmeql |
|- ( ( F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) /\ G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) -> dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) |
| 10 |
7 8 9
|
syl2an |
|- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) |
| 11 |
|
rhmrcl1 |
|- ( F e. ( S RingHom T ) -> S e. Ring ) |
| 12 |
11
|
adantr |
|- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> S e. Ring ) |
| 13 |
5
|
issubrg3 |
|- ( S e. Ring -> ( dom ( F i^i G ) e. ( SubRing ` S ) <-> ( dom ( F i^i G ) e. ( SubGrp ` S ) /\ dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) ) ) |
| 14 |
12 13
|
syl |
|- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> ( dom ( F i^i G ) e. ( SubRing ` S ) <-> ( dom ( F i^i G ) e. ( SubGrp ` S ) /\ dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) ) ) |
| 15 |
4 10 14
|
mpbir2and |
|- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> dom ( F i^i G ) e. ( SubRing ` S ) ) |