Metamath Proof Explorer


Theorem rndrhmcl

Description: The image of a division ring by a ring homomorphism is a division ring. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses rndrhmcl.r R=N𝑠ranF
rndrhmcl.1 0˙=0N
rndrhmcl.h φFMRingHomN
rndrhmcl.2 φranF0˙
rndrhmcl.m φMDivRing
Assertion rndrhmcl φRDivRing

Proof

Step Hyp Ref Expression
1 rndrhmcl.r R=N𝑠ranF
2 rndrhmcl.1 0˙=0N
3 rndrhmcl.h φFMRingHomN
4 rndrhmcl.2 φranF0˙
5 rndrhmcl.m φMDivRing
6 imadmrn FdomF=ranF
7 6 oveq2i N𝑠FdomF=N𝑠ranF
8 1 7 eqtr4i R=N𝑠FdomF
9 eqid BaseM=BaseM
10 eqid BaseN=BaseN
11 9 10 rhmf FMRingHomNF:BaseMBaseN
12 3 11 syl φF:BaseMBaseN
13 12 fdmd φdomF=BaseM
14 9 sdrgid MDivRingBaseMSubDRingM
15 5 14 syl φBaseMSubDRingM
16 13 15 eqeltrd φdomFSubDRingM
17 8 2 3 16 4 imadrhmcl φRDivRing