| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rndrhmcl.r |
⊢ 𝑅 = ( 𝑁 ↾s ran 𝐹 ) |
| 2 |
|
rndrhmcl.1 |
⊢ 0 = ( 0g ‘ 𝑁 ) |
| 3 |
|
rndrhmcl.h |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ) |
| 4 |
|
rndrhmcl.2 |
⊢ ( 𝜑 → ran 𝐹 ≠ { 0 } ) |
| 5 |
|
rndrhmcl.m |
⊢ ( 𝜑 → 𝑀 ∈ DivRing ) |
| 6 |
|
imadmrn |
⊢ ( 𝐹 “ dom 𝐹 ) = ran 𝐹 |
| 7 |
6
|
oveq2i |
⊢ ( 𝑁 ↾s ( 𝐹 “ dom 𝐹 ) ) = ( 𝑁 ↾s ran 𝐹 ) |
| 8 |
1 7
|
eqtr4i |
⊢ 𝑅 = ( 𝑁 ↾s ( 𝐹 “ dom 𝐹 ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) |
| 11 |
9 10
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 13 |
12
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ( Base ‘ 𝑀 ) ) |
| 14 |
9
|
sdrgid |
⊢ ( 𝑀 ∈ DivRing → ( Base ‘ 𝑀 ) ∈ ( SubDRing ‘ 𝑀 ) ) |
| 15 |
5 14
|
syl |
⊢ ( 𝜑 → ( Base ‘ 𝑀 ) ∈ ( SubDRing ‘ 𝑀 ) ) |
| 16 |
13 15
|
eqeltrd |
⊢ ( 𝜑 → dom 𝐹 ∈ ( SubDRing ‘ 𝑀 ) ) |
| 17 |
8 2 3 16 4
|
imadrhmcl |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |