| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imadrhmcl.r |
⊢ 𝑅 = ( 𝑁 ↾s ( 𝐹 “ 𝑆 ) ) |
| 2 |
|
imadrhmcl.0 |
⊢ 0 = ( 0g ‘ 𝑁 ) |
| 3 |
|
imadrhmcl.h |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ) |
| 4 |
|
imadrhmcl.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubDRing ‘ 𝑀 ) ) |
| 5 |
|
imadrhmcl.1 |
⊢ ( 𝜑 → ran 𝐹 ≠ { 0 } ) |
| 6 |
|
sdrgsubrg |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑀 ) → 𝑆 ∈ ( SubRing ‘ 𝑀 ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑀 ) ) |
| 8 |
|
rhmima |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑆 ∈ ( SubRing ‘ 𝑀 ) ) → ( 𝐹 “ 𝑆 ) ∈ ( SubRing ‘ 𝑁 ) ) |
| 9 |
3 7 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 “ 𝑆 ) ∈ ( SubRing ‘ 𝑁 ) ) |
| 10 |
1
|
subrgring |
⊢ ( ( 𝐹 “ 𝑆 ) ∈ ( SubRing ‘ 𝑁 ) → 𝑅 ∈ Ring ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 14 |
12 13
|
unitss |
⊢ ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) |
| 18 |
16 17
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 19 |
3 18
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 21 |
|
rhmrcl2 |
⊢ ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) → 𝑁 ∈ Ring ) |
| 22 |
3 21
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ Ring ) |
| 23 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) |
| 24 |
|
eqid |
⊢ ( 1r ‘ 𝑁 ) = ( 1r ‘ 𝑁 ) |
| 25 |
1 24
|
subrg1 |
⊢ ( ( 𝐹 “ 𝑆 ) ∈ ( SubRing ‘ 𝑁 ) → ( 1r ‘ 𝑁 ) = ( 1r ‘ 𝑅 ) ) |
| 26 |
9 25
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑁 ) = ( 1r ‘ 𝑅 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( 1r ‘ 𝑁 ) = ( 1r ‘ 𝑅 ) ) |
| 28 |
1 2
|
subrg0 |
⊢ ( ( 𝐹 “ 𝑆 ) ∈ ( SubRing ‘ 𝑁 ) → 0 = ( 0g ‘ 𝑅 ) ) |
| 29 |
9 28
|
syl |
⊢ ( 𝜑 → 0 = ( 0g ‘ 𝑅 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → 0 = ( 0g ‘ 𝑅 ) ) |
| 31 |
23 27 30
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → 0 = ( 1r ‘ 𝑁 ) ) |
| 32 |
17 2 24
|
01eq0ring |
⊢ ( ( 𝑁 ∈ Ring ∧ 0 = ( 1r ‘ 𝑁 ) ) → ( Base ‘ 𝑁 ) = { 0 } ) |
| 33 |
22 31 32
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( Base ‘ 𝑁 ) = { 0 } ) |
| 34 |
33
|
feq3d |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ↔ 𝐹 : ( Base ‘ 𝑀 ) ⟶ { 0 } ) ) |
| 35 |
20 34
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ { 0 } ) |
| 36 |
2
|
fvexi |
⊢ 0 ∈ V |
| 37 |
36
|
fconst2 |
⊢ ( 𝐹 : ( Base ‘ 𝑀 ) ⟶ { 0 } ↔ 𝐹 = ( ( Base ‘ 𝑀 ) × { 0 } ) ) |
| 38 |
35 37
|
sylib |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → 𝐹 = ( ( Base ‘ 𝑀 ) × { 0 } ) ) |
| 39 |
19
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
| 40 |
|
sdrgrcl |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑀 ) → 𝑀 ∈ DivRing ) |
| 41 |
4 40
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ DivRing ) |
| 42 |
41
|
drngringd |
⊢ ( 𝜑 → 𝑀 ∈ Ring ) |
| 43 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
| 44 |
16 43
|
ring0cl |
⊢ ( 𝑀 ∈ Ring → ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) ) |
| 45 |
42 44
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) ∈ ( Base ‘ 𝑀 ) ) |
| 46 |
45
|
ne0d |
⊢ ( 𝜑 → ( Base ‘ 𝑀 ) ≠ ∅ ) |
| 47 |
|
fconst5 |
⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ ( Base ‘ 𝑀 ) ≠ ∅ ) → ( 𝐹 = ( ( Base ‘ 𝑀 ) × { 0 } ) ↔ ran 𝐹 = { 0 } ) ) |
| 48 |
39 46 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 = ( ( Base ‘ 𝑀 ) × { 0 } ) ↔ ran 𝐹 = { 0 } ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ( 𝐹 = ( ( Base ‘ 𝑀 ) × { 0 } ) ↔ ran 𝐹 = { 0 } ) ) |
| 50 |
38 49
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) → ran 𝐹 = { 0 } ) |
| 51 |
5 50
|
mteqand |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) |
| 52 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 53 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 54 |
13 52 53
|
0unit |
⊢ ( 𝑅 ∈ Ring → ( ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
| 55 |
11 54
|
syl |
⊢ ( 𝜑 → ( ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) ) ) |
| 56 |
55
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ↔ ( 1r ‘ 𝑅 ) ≠ ( 0g ‘ 𝑅 ) ) ) |
| 57 |
51 56
|
mpbird |
⊢ ( 𝜑 → ¬ ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 58 |
|
ssdifsn |
⊢ ( ( Unit ‘ 𝑅 ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ↔ ( ( Unit ‘ 𝑅 ) ⊆ ( Base ‘ 𝑅 ) ∧ ¬ ( 0g ‘ 𝑅 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
| 59 |
15 57 58
|
sylanbrc |
⊢ ( 𝜑 → ( Unit ‘ 𝑅 ) ⊆ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 60 |
39
|
fnfund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 61 |
1
|
ressbasss2 |
⊢ ( Base ‘ 𝑅 ) ⊆ ( 𝐹 “ 𝑆 ) |
| 62 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 63 |
61 62
|
sselid |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) → 𝑥 ∈ ( 𝐹 “ 𝑆 ) ) |
| 64 |
|
fvelima |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ ( 𝐹 “ 𝑆 ) ) → ∃ 𝑎 ∈ 𝑆 ( 𝐹 ‘ 𝑎 ) = 𝑥 ) |
| 65 |
60 63 64
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) → ∃ 𝑎 ∈ 𝑆 ( 𝐹 ‘ 𝑎 ) = 𝑥 ) |
| 66 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( 𝐹 ‘ 𝑎 ) = 𝑥 ) |
| 67 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → 𝑎 ∈ 𝑆 ) |
| 68 |
67
|
fvresd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 69 |
|
eqid |
⊢ ( 𝑀 ↾s 𝑆 ) = ( 𝑀 ↾s 𝑆 ) |
| 70 |
69
|
resrhm |
⊢ ( ( 𝐹 ∈ ( 𝑀 RingHom 𝑁 ) ∧ 𝑆 ∈ ( SubRing ‘ 𝑀 ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑁 ) ) |
| 71 |
3 7 70
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑁 ) ) |
| 72 |
|
df-ima |
⊢ ( 𝐹 “ 𝑆 ) = ran ( 𝐹 ↾ 𝑆 ) |
| 73 |
|
eqimss2 |
⊢ ( ( 𝐹 “ 𝑆 ) = ran ( 𝐹 ↾ 𝑆 ) → ran ( 𝐹 ↾ 𝑆 ) ⊆ ( 𝐹 “ 𝑆 ) ) |
| 74 |
72 73
|
mp1i |
⊢ ( 𝜑 → ran ( 𝐹 ↾ 𝑆 ) ⊆ ( 𝐹 “ 𝑆 ) ) |
| 75 |
1
|
resrhm2b |
⊢ ( ( ( 𝐹 “ 𝑆 ) ∈ ( SubRing ‘ 𝑁 ) ∧ ran ( 𝐹 ↾ 𝑆 ) ⊆ ( 𝐹 “ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑁 ) ↔ ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑅 ) ) ) |
| 76 |
9 74 75
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑁 ) ↔ ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑅 ) ) ) |
| 77 |
71 76
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑅 ) ) |
| 78 |
77
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑅 ) ) |
| 79 |
|
eldifsni |
⊢ ( 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) → 𝑥 ≠ ( 0g ‘ 𝑅 ) ) |
| 80 |
79
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → 𝑥 ≠ ( 0g ‘ 𝑅 ) ) |
| 81 |
68
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 82 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → 𝑎 = ( 0g ‘ 𝑀 ) ) |
| 83 |
82
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑎 ) = ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ 𝑀 ) ) ) |
| 84 |
69 43
|
subrg0 |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑀 ) → ( 0g ‘ 𝑀 ) = ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) ) |
| 85 |
7 84
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) = ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) ) |
| 86 |
85
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ 𝑀 ) ) = ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) ) ) |
| 87 |
|
rhmghm |
⊢ ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑅 ) → ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) GrpHom 𝑅 ) ) |
| 88 |
|
eqid |
⊢ ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) = ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) |
| 89 |
88 52
|
ghmid |
⊢ ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) GrpHom 𝑅 ) → ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 90 |
77 87 89
|
3syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ ( 𝑀 ↾s 𝑆 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 91 |
86 90
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑅 ) ) |
| 92 |
91
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ ( 0g ‘ 𝑀 ) ) = ( 0g ‘ 𝑅 ) ) |
| 93 |
83 92
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑎 ) = ( 0g ‘ 𝑅 ) ) |
| 94 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑎 ) = 𝑥 ) |
| 95 |
81 93 94
|
3eqtr3rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) ∧ 𝑎 = ( 0g ‘ 𝑀 ) ) → 𝑥 = ( 0g ‘ 𝑅 ) ) |
| 96 |
80 95
|
mteqand |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → 𝑎 ≠ ( 0g ‘ 𝑀 ) ) |
| 97 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → 𝑆 ∈ ( SubDRing ‘ 𝑀 ) ) |
| 98 |
|
eqid |
⊢ ( Unit ‘ ( 𝑀 ↾s 𝑆 ) ) = ( Unit ‘ ( 𝑀 ↾s 𝑆 ) ) |
| 99 |
69 43 98
|
sdrgunit |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝑀 ) → ( 𝑎 ∈ ( Unit ‘ ( 𝑀 ↾s 𝑆 ) ) ↔ ( 𝑎 ∈ 𝑆 ∧ 𝑎 ≠ ( 0g ‘ 𝑀 ) ) ) ) |
| 100 |
97 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( 𝑎 ∈ ( Unit ‘ ( 𝑀 ↾s 𝑆 ) ) ↔ ( 𝑎 ∈ 𝑆 ∧ 𝑎 ≠ ( 0g ‘ 𝑀 ) ) ) ) |
| 101 |
67 96 100
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → 𝑎 ∈ ( Unit ‘ ( 𝑀 ↾s 𝑆 ) ) ) |
| 102 |
|
elrhmunit |
⊢ ( ( ( 𝐹 ↾ 𝑆 ) ∈ ( ( 𝑀 ↾s 𝑆 ) RingHom 𝑅 ) ∧ 𝑎 ∈ ( Unit ‘ ( 𝑀 ↾s 𝑆 ) ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑎 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 103 |
78 101 102
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( ( 𝐹 ↾ 𝑆 ) ‘ 𝑎 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 104 |
68 103
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → ( 𝐹 ‘ 𝑎 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 105 |
66 104
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ∧ ( 𝑎 ∈ 𝑆 ∧ ( 𝐹 ‘ 𝑎 ) = 𝑥 ) ) → 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
| 106 |
65 105
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) → 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
| 107 |
59 106
|
eqelssd |
⊢ ( 𝜑 → ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) |
| 108 |
12 13 52
|
isdrng |
⊢ ( 𝑅 ∈ DivRing ↔ ( 𝑅 ∈ Ring ∧ ( Unit ‘ 𝑅 ) = ( ( Base ‘ 𝑅 ) ∖ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 109 |
11 107 108
|
sylanbrc |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |