Metamath Proof Explorer


Theorem sdrgrcl

Description: Reverse closure for a sub-division-ring predicate. (Contributed by SN, 19-Feb-2025)

Ref Expression
Assertion sdrgrcl ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝑅 ∈ DivRing )

Proof

Step Hyp Ref Expression
1 issdrg ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) ↔ ( 𝑅 ∈ DivRing ∧ 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( 𝑅s 𝐴 ) ∈ DivRing ) )
2 1 simp1bi ( 𝐴 ∈ ( SubDRing ‘ 𝑅 ) → 𝑅 ∈ DivRing )