| Step |
Hyp |
Ref |
Expression |
| 1 |
|
algextdeg.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝐹 ) |
| 2 |
|
algextdeg.l |
⊢ 𝐿 = ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
| 3 |
|
algextdeg.d |
⊢ 𝐷 = ( deg1 ‘ 𝐸 ) |
| 4 |
|
algextdeg.m |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
| 5 |
|
algextdeg.f |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
| 6 |
|
algextdeg.e |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 7 |
|
algextdeg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
| 8 |
|
algextdeglem.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
| 9 |
|
algextdeglem.y |
⊢ 𝑃 = ( Poly1 ‘ 𝐾 ) |
| 10 |
|
algextdeglem.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
| 11 |
|
algextdeglem.g |
⊢ 𝐺 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
| 12 |
|
algextdeglem.n |
⊢ 𝑁 = ( 𝑥 ∈ 𝑈 ↦ [ 𝑥 ] ( 𝑃 ~QG 𝑍 ) ) |
| 13 |
|
algextdeglem.z |
⊢ 𝑍 = ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) |
| 14 |
|
algextdeglem.q |
⊢ 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) ) |
| 15 |
|
algextdeglem.j |
⊢ 𝐽 = ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐺 “ 𝑝 ) ) |
| 16 |
|
issdrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
| 17 |
6 16
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
| 18 |
17
|
simp2d |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
| 19 |
|
subrgsubg |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → 𝐹 ∈ ( SubGrp ‘ 𝐸 ) ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
| 21 |
20
|
subgss |
⊢ ( 𝐹 ∈ ( SubGrp ‘ 𝐸 ) → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
| 22 |
18 19 21
|
3syl |
⊢ ( 𝜑 → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
| 23 |
1 20
|
ressbas2 |
⊢ ( 𝐹 ⊆ ( Base ‘ 𝐸 ) → 𝐹 = ( Base ‘ 𝐾 ) ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → 𝐹 = ( Base ‘ 𝐾 ) ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐿 ) ‘ ( Base ‘ 𝐾 ) ) ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝜑 → ( dim ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) = ( dim ‘ ( ( subringAlg ‘ 𝐿 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 27 |
|
eqid |
⊢ ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) = ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) |
| 28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
algextdeglem2 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑃 LMHom ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) ) |
| 29 |
|
eqid |
⊢ ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) = ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) |
| 30 |
|
eqid |
⊢ ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) ) = ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) ) |
| 31 |
1
|
fveq2i |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 32 |
9 31
|
eqtri |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 33 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝐸 ∈ Field ) |
| 34 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 35 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
| 36 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
| 37 |
8 1 20 35 36 18
|
irngssv |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
| 38 |
37 7
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐸 ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝐴 ∈ ( Base ‘ 𝐸 ) ) |
| 40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑝 ∈ 𝑈 ) |
| 41 |
20 8 32 10 33 34 39 40
|
evls1fldgencl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
| 42 |
41
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑈 ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
| 43 |
11
|
rnmptss |
⊢ ( ∀ 𝑝 ∈ 𝑈 ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) → ran 𝐺 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
| 44 |
42 43
|
syl |
⊢ ( 𝜑 → ran 𝐺 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
| 45 |
5
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
| 46 |
8 32 20 10 36 18 38 11
|
evls1maprhm |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑃 RingHom 𝐸 ) ) |
| 47 |
|
rnrhmsubrg |
⊢ ( 𝐺 ∈ ( 𝑃 RingHom 𝐸 ) → ran 𝐺 ∈ ( SubRing ‘ 𝐸 ) ) |
| 48 |
46 47
|
syl |
⊢ ( 𝜑 → ran 𝐺 ∈ ( SubRing ‘ 𝐸 ) ) |
| 49 |
2
|
oveq1i |
⊢ ( 𝐿 ↾s ran 𝐺 ) = ( ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ↾s ran 𝐺 ) |
| 50 |
|
ovex |
⊢ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ V |
| 51 |
|
ressabs |
⊢ ( ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ V ∧ ran 𝐺 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) → ( ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ↾s ran 𝐺 ) = ( 𝐸 ↾s ran 𝐺 ) ) |
| 52 |
50 44 51
|
sylancr |
⊢ ( 𝜑 → ( ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ↾s ran 𝐺 ) = ( 𝐸 ↾s ran 𝐺 ) ) |
| 53 |
49 52
|
eqtrid |
⊢ ( 𝜑 → ( 𝐿 ↾s ran 𝐺 ) = ( 𝐸 ↾s ran 𝐺 ) ) |
| 54 |
|
eqid |
⊢ ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) |
| 55 |
38
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ( Base ‘ 𝐸 ) ) |
| 56 |
22 55
|
unssd |
⊢ ( 𝜑 → ( 𝐹 ∪ { 𝐴 } ) ⊆ ( Base ‘ 𝐸 ) ) |
| 57 |
20 45 56
|
fldgensdrg |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ 𝐸 ) ) |
| 58 |
|
issdrg |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ∈ DivRing ) ) |
| 59 |
57 58
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ DivRing ∧ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ∈ DivRing ) ) |
| 60 |
59
|
simp2d |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) ) |
| 61 |
2
|
resrhm2b |
⊢ ( ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) ∧ ran 𝐺 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) → ( 𝐺 ∈ ( 𝑃 RingHom 𝐸 ) ↔ 𝐺 ∈ ( 𝑃 RingHom 𝐿 ) ) ) |
| 62 |
61
|
biimpa |
⊢ ( ( ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) ∧ ran 𝐺 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ∧ 𝐺 ∈ ( 𝑃 RingHom 𝐸 ) ) → 𝐺 ∈ ( 𝑃 RingHom 𝐿 ) ) |
| 63 |
60 44 46 62
|
syl21anc |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑃 RingHom 𝐿 ) ) |
| 64 |
|
rhmghm |
⊢ ( 𝐺 ∈ ( 𝑃 RingHom 𝐿 ) → 𝐺 ∈ ( 𝑃 GrpHom 𝐿 ) ) |
| 65 |
63 64
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑃 GrpHom 𝐿 ) ) |
| 66 |
54 65 13 14 15 10 12
|
ghmquskerco |
⊢ ( 𝜑 → 𝐺 = ( 𝐽 ∘ 𝑁 ) ) |
| 67 |
66
|
rneqd |
⊢ ( 𝜑 → ran 𝐺 = ran ( 𝐽 ∘ 𝑁 ) ) |
| 68 |
14
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) ) ) |
| 69 |
10
|
a1i |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝑃 ) ) |
| 70 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑃 ~QG 𝑍 ) ∈ V ) |
| 71 |
17
|
simp3d |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
| 72 |
32 71
|
ply1lvec |
⊢ ( 𝜑 → 𝑃 ∈ LVec ) |
| 73 |
68 69 70 72
|
qusbas |
⊢ ( 𝜑 → ( 𝑈 / ( 𝑃 ~QG 𝑍 ) ) = ( Base ‘ 𝑄 ) ) |
| 74 |
|
eqid |
⊢ ( 𝑈 / ( 𝑃 ~QG 𝑍 ) ) = ( 𝑈 / ( 𝑃 ~QG 𝑍 ) ) |
| 75 |
54
|
ghmker |
⊢ ( 𝐺 ∈ ( 𝑃 GrpHom 𝐿 ) → ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) ∈ ( NrmSGrp ‘ 𝑃 ) ) |
| 76 |
65 75
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) ∈ ( NrmSGrp ‘ 𝑃 ) ) |
| 77 |
13 76
|
eqeltrid |
⊢ ( 𝜑 → 𝑍 ∈ ( NrmSGrp ‘ 𝑃 ) ) |
| 78 |
10 74 12 77
|
qusrn |
⊢ ( 𝜑 → ran 𝑁 = ( 𝑈 / ( 𝑃 ~QG 𝑍 ) ) ) |
| 79 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) |
| 80 |
8 32 20 10 36 18 38 11 79
|
evls1maplmhm |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑃 LMHom ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) |
| 81 |
80
|
elexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑄 ) ) → 𝐺 ∈ V ) |
| 83 |
82
|
imaexd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑄 ) ) → ( 𝐺 “ 𝑝 ) ∈ V ) |
| 84 |
83
|
uniexd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑄 ) ) → ∪ ( 𝐺 “ 𝑝 ) ∈ V ) |
| 85 |
15 84
|
dmmptd |
⊢ ( 𝜑 → dom 𝐽 = ( Base ‘ 𝑄 ) ) |
| 86 |
73 78 85
|
3eqtr4rd |
⊢ ( 𝜑 → dom 𝐽 = ran 𝑁 ) |
| 87 |
|
rncoeq |
⊢ ( dom 𝐽 = ran 𝑁 → ran ( 𝐽 ∘ 𝑁 ) = ran 𝐽 ) |
| 88 |
86 87
|
syl |
⊢ ( 𝜑 → ran ( 𝐽 ∘ 𝑁 ) = ran 𝐽 ) |
| 89 |
67 88
|
eqtrd |
⊢ ( 𝜑 → ran 𝐺 = ran 𝐽 ) |
| 90 |
89
|
oveq2d |
⊢ ( 𝜑 → ( 𝐿 ↾s ran 𝐺 ) = ( 𝐿 ↾s ran 𝐽 ) ) |
| 91 |
|
eqid |
⊢ ( 𝐿 ↾s ran 𝐽 ) = ( 𝐿 ↾s ran 𝐽 ) |
| 92 |
1
|
subrgcrng |
⊢ ( ( 𝐸 ∈ CRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) → 𝐾 ∈ CRing ) |
| 93 |
36 18 92
|
syl2anc |
⊢ ( 𝜑 → 𝐾 ∈ CRing ) |
| 94 |
9
|
ply1crng |
⊢ ( 𝐾 ∈ CRing → 𝑃 ∈ CRing ) |
| 95 |
93 94
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ CRing ) |
| 96 |
54 63 13 14 15 95
|
rhmquskerlem |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 RingHom 𝐿 ) ) |
| 97 |
8 32 20 10 36 18 38 11
|
evls1maprnss |
⊢ ( 𝜑 → 𝐹 ⊆ ran 𝐺 ) |
| 98 |
|
eqid |
⊢ ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐸 ) |
| 99 |
1 98
|
subrg1 |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐾 ) ) |
| 100 |
18 99
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐸 ) = ( 1r ‘ 𝐾 ) ) |
| 101 |
98
|
subrg1cl |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → ( 1r ‘ 𝐸 ) ∈ 𝐹 ) |
| 102 |
18 101
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐸 ) ∈ 𝐹 ) |
| 103 |
100 102
|
eqeltrrd |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) ∈ 𝐹 ) |
| 104 |
97 103
|
sseldd |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) ∈ ran 𝐺 ) |
| 105 |
|
drngnzr |
⊢ ( 𝐸 ∈ DivRing → 𝐸 ∈ NzRing ) |
| 106 |
98 35
|
nzrnz |
⊢ ( 𝐸 ∈ NzRing → ( 1r ‘ 𝐸 ) ≠ ( 0g ‘ 𝐸 ) ) |
| 107 |
45 105 106
|
3syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐸 ) ≠ ( 0g ‘ 𝐸 ) ) |
| 108 |
36
|
crnggrpd |
⊢ ( 𝜑 → 𝐸 ∈ Grp ) |
| 109 |
108
|
grpmndd |
⊢ ( 𝜑 → 𝐸 ∈ Mnd ) |
| 110 |
|
sdrgsubrg |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ 𝐸 ) → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) ) |
| 111 |
|
subrgsubg |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubGrp ‘ 𝐸 ) ) |
| 112 |
57 110 111
|
3syl |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubGrp ‘ 𝐸 ) ) |
| 113 |
35
|
subg0cl |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubGrp ‘ 𝐸 ) → ( 0g ‘ 𝐸 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
| 114 |
112 113
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
| 115 |
20 45 56
|
fldgenssv |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ⊆ ( Base ‘ 𝐸 ) ) |
| 116 |
2 20 35
|
ress0g |
⊢ ( ( 𝐸 ∈ Mnd ∧ ( 0g ‘ 𝐸 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∧ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ⊆ ( Base ‘ 𝐸 ) ) → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐿 ) ) |
| 117 |
109 114 115 116
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐿 ) ) |
| 118 |
107 100 117
|
3netr3d |
⊢ ( 𝜑 → ( 1r ‘ 𝐾 ) ≠ ( 0g ‘ 𝐿 ) ) |
| 119 |
|
nelsn |
⊢ ( ( 1r ‘ 𝐾 ) ≠ ( 0g ‘ 𝐿 ) → ¬ ( 1r ‘ 𝐾 ) ∈ { ( 0g ‘ 𝐿 ) } ) |
| 120 |
118 119
|
syl |
⊢ ( 𝜑 → ¬ ( 1r ‘ 𝐾 ) ∈ { ( 0g ‘ 𝐿 ) } ) |
| 121 |
|
nelne1 |
⊢ ( ( ( 1r ‘ 𝐾 ) ∈ ran 𝐺 ∧ ¬ ( 1r ‘ 𝐾 ) ∈ { ( 0g ‘ 𝐿 ) } ) → ran 𝐺 ≠ { ( 0g ‘ 𝐿 ) } ) |
| 122 |
104 120 121
|
syl2anc |
⊢ ( 𝜑 → ran 𝐺 ≠ { ( 0g ‘ 𝐿 ) } ) |
| 123 |
89 122
|
eqnetrrd |
⊢ ( 𝜑 → ran 𝐽 ≠ { ( 0g ‘ 𝐿 ) } ) |
| 124 |
|
eqid |
⊢ ( oppr ‘ 𝑃 ) = ( oppr ‘ 𝑃 ) |
| 125 |
1
|
sdrgdrng |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) → 𝐾 ∈ DivRing ) |
| 126 |
|
drngnzr |
⊢ ( 𝐾 ∈ DivRing → 𝐾 ∈ NzRing ) |
| 127 |
6 125 126
|
3syl |
⊢ ( 𝜑 → 𝐾 ∈ NzRing ) |
| 128 |
9
|
ply1nz |
⊢ ( 𝐾 ∈ NzRing → 𝑃 ∈ NzRing ) |
| 129 |
127 128
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ NzRing ) |
| 130 |
|
eqid |
⊢ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } |
| 131 |
|
eqid |
⊢ ( RSpan ‘ 𝑃 ) = ( RSpan ‘ 𝑃 ) |
| 132 |
1
|
fveq2i |
⊢ ( idlGen1p ‘ 𝐾 ) = ( idlGen1p ‘ ( 𝐸 ↾s 𝐹 ) ) |
| 133 |
8 32 20 5 6 38 35 130 131 132
|
ply1annig1p |
⊢ ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = ( ( RSpan ‘ 𝑃 ) ‘ { ( ( idlGen1p ‘ 𝐾 ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) } ) ) |
| 134 |
117
|
sneqd |
⊢ ( 𝜑 → { ( 0g ‘ 𝐸 ) } = { ( 0g ‘ 𝐿 ) } ) |
| 135 |
134
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐺 “ { ( 0g ‘ 𝐸 ) } ) = ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) ) |
| 136 |
13 135
|
eqtr4id |
⊢ ( 𝜑 → 𝑍 = ( ◡ 𝐺 “ { ( 0g ‘ 𝐸 ) } ) ) |
| 137 |
10
|
mpteq1i |
⊢ ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) = ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
| 138 |
11 137
|
eqtri |
⊢ 𝐺 = ( 𝑝 ∈ ( Base ‘ 𝑃 ) ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
| 139 |
8 32 20 36 18 38 35 130 138
|
ply1annidllem |
⊢ ( 𝜑 → { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } = ( ◡ 𝐺 “ { ( 0g ‘ 𝐸 ) } ) ) |
| 140 |
136 139
|
eqtr4d |
⊢ ( 𝜑 → 𝑍 = { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) |
| 141 |
|
eqid |
⊢ ( 𝐸 minPoly 𝐹 ) = ( 𝐸 minPoly 𝐹 ) |
| 142 |
8 32 20 5 6 38 35 130 131 132 141
|
minplyval |
⊢ ( 𝜑 → ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) = ( ( idlGen1p ‘ 𝐾 ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) ) |
| 143 |
142
|
sneqd |
⊢ ( 𝜑 → { ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) } = { ( ( idlGen1p ‘ 𝐾 ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) } ) |
| 144 |
143
|
fveq2d |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝑃 ) ‘ { ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) } ) = ( ( RSpan ‘ 𝑃 ) ‘ { ( ( idlGen1p ‘ 𝐾 ) ‘ { 𝑞 ∈ dom 𝑂 ∣ ( ( 𝑂 ‘ 𝑞 ) ‘ 𝐴 ) = ( 0g ‘ 𝐸 ) } ) } ) ) |
| 145 |
133 140 144
|
3eqtr4d |
⊢ ( 𝜑 → 𝑍 = ( ( RSpan ‘ 𝑃 ) ‘ { ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) } ) ) |
| 146 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 147 |
|
eqid |
⊢ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) = ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) |
| 148 |
147 5 6 141 7
|
irngnminplynz |
⊢ ( 𝜑 → ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) ≠ ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) ) |
| 149 |
|
eqid |
⊢ ( Poly1 ‘ 𝐸 ) = ( Poly1 ‘ 𝐸 ) |
| 150 |
149 1 9 10 18 147
|
ressply10g |
⊢ ( 𝜑 → ( 0g ‘ ( Poly1 ‘ 𝐸 ) ) = ( 0g ‘ 𝑃 ) ) |
| 151 |
148 150
|
neeqtrd |
⊢ ( 𝜑 → ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) ≠ ( 0g ‘ 𝑃 ) ) |
| 152 |
8 32 20 5 6 38 141 146 151
|
minplyirred |
⊢ ( 𝜑 → ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) ∈ ( Irred ‘ 𝑃 ) ) |
| 153 |
|
eqid |
⊢ ( ( RSpan ‘ 𝑃 ) ‘ { ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) } ) = ( ( RSpan ‘ 𝑃 ) ‘ { ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) } ) |
| 154 |
|
fldsdrgfld |
⊢ ( ( 𝐸 ∈ Field ∧ 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 155 |
5 6 154
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ Field ) |
| 156 |
1 155
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ Field ) |
| 157 |
9
|
ply1pid |
⊢ ( 𝐾 ∈ Field → 𝑃 ∈ PID ) |
| 158 |
156 157
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ PID ) |
| 159 |
8 32 20 5 6 38 35 130 131 132 141
|
minplycl |
⊢ ( 𝜑 → ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) ∈ ( Base ‘ 𝑃 ) ) |
| 160 |
159 10
|
eleqtrrdi |
⊢ ( 𝜑 → ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) ∈ 𝑈 ) |
| 161 |
95
|
crngringd |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 162 |
160
|
snssd |
⊢ ( 𝜑 → { ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) } ⊆ 𝑈 ) |
| 163 |
|
eqid |
⊢ ( LIdeal ‘ 𝑃 ) = ( LIdeal ‘ 𝑃 ) |
| 164 |
131 10 163
|
rspcl |
⊢ ( ( 𝑃 ∈ Ring ∧ { ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) } ⊆ 𝑈 ) → ( ( RSpan ‘ 𝑃 ) ‘ { ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) } ) ∈ ( LIdeal ‘ 𝑃 ) ) |
| 165 |
161 162 164
|
syl2anc |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝑃 ) ‘ { ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) } ) ∈ ( LIdeal ‘ 𝑃 ) ) |
| 166 |
10 131 146 153 158 160 151 165
|
mxidlirred |
⊢ ( 𝜑 → ( ( ( RSpan ‘ 𝑃 ) ‘ { ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) } ) ∈ ( MaxIdeal ‘ 𝑃 ) ↔ ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) ∈ ( Irred ‘ 𝑃 ) ) ) |
| 167 |
152 166
|
mpbird |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝑃 ) ‘ { ( ( 𝐸 minPoly 𝐹 ) ‘ 𝐴 ) } ) ∈ ( MaxIdeal ‘ 𝑃 ) ) |
| 168 |
145 167
|
eqeltrd |
⊢ ( 𝜑 → 𝑍 ∈ ( MaxIdeal ‘ 𝑃 ) ) |
| 169 |
|
eqid |
⊢ ( MaxIdeal ‘ 𝑃 ) = ( MaxIdeal ‘ 𝑃 ) |
| 170 |
169 124
|
crngmxidl |
⊢ ( 𝑃 ∈ CRing → ( MaxIdeal ‘ 𝑃 ) = ( MaxIdeal ‘ ( oppr ‘ 𝑃 ) ) ) |
| 171 |
95 170
|
syl |
⊢ ( 𝜑 → ( MaxIdeal ‘ 𝑃 ) = ( MaxIdeal ‘ ( oppr ‘ 𝑃 ) ) ) |
| 172 |
168 171
|
eleqtrd |
⊢ ( 𝜑 → 𝑍 ∈ ( MaxIdeal ‘ ( oppr ‘ 𝑃 ) ) ) |
| 173 |
124 14 129 168 172
|
qsdrngi |
⊢ ( 𝜑 → 𝑄 ∈ DivRing ) |
| 174 |
91 54 96 123 173
|
rndrhmcl |
⊢ ( 𝜑 → ( 𝐿 ↾s ran 𝐽 ) ∈ DivRing ) |
| 175 |
90 174
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐿 ↾s ran 𝐺 ) ∈ DivRing ) |
| 176 |
53 175
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐸 ↾s ran 𝐺 ) ∈ DivRing ) |
| 177 |
|
issdrg |
⊢ ( ran 𝐺 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ ran 𝐺 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s ran 𝐺 ) ∈ DivRing ) ) |
| 178 |
45 48 176 177
|
syl3anbrc |
⊢ ( 𝜑 → ran 𝐺 ∈ ( SubDRing ‘ 𝐸 ) ) |
| 179 |
|
fveq2 |
⊢ ( 𝑝 = ( var1 ‘ 𝐾 ) → ( 𝑂 ‘ 𝑝 ) = ( 𝑂 ‘ ( var1 ‘ 𝐾 ) ) ) |
| 180 |
179
|
fveq1d |
⊢ ( 𝑝 = ( var1 ‘ 𝐾 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) = ( ( 𝑂 ‘ ( var1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) |
| 181 |
180
|
eqeq2d |
⊢ ( 𝑝 = ( var1 ‘ 𝐾 ) → ( 𝐴 = ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ↔ 𝐴 = ( ( 𝑂 ‘ ( var1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) ) |
| 182 |
1 71
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ DivRing ) |
| 183 |
182
|
drngringd |
⊢ ( 𝜑 → 𝐾 ∈ Ring ) |
| 184 |
|
eqid |
⊢ ( var1 ‘ 𝐾 ) = ( var1 ‘ 𝐾 ) |
| 185 |
184 9 10
|
vr1cl |
⊢ ( 𝐾 ∈ Ring → ( var1 ‘ 𝐾 ) ∈ 𝑈 ) |
| 186 |
183 185
|
syl |
⊢ ( 𝜑 → ( var1 ‘ 𝐾 ) ∈ 𝑈 ) |
| 187 |
8 184 1 20 36 18
|
evls1var |
⊢ ( 𝜑 → ( 𝑂 ‘ ( var1 ‘ 𝐾 ) ) = ( I ↾ ( Base ‘ 𝐸 ) ) ) |
| 188 |
187
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( var1 ‘ 𝐾 ) ) ‘ 𝐴 ) = ( ( I ↾ ( Base ‘ 𝐸 ) ) ‘ 𝐴 ) ) |
| 189 |
|
fvresi |
⊢ ( 𝐴 ∈ ( Base ‘ 𝐸 ) → ( ( I ↾ ( Base ‘ 𝐸 ) ) ‘ 𝐴 ) = 𝐴 ) |
| 190 |
38 189
|
syl |
⊢ ( 𝜑 → ( ( I ↾ ( Base ‘ 𝐸 ) ) ‘ 𝐴 ) = 𝐴 ) |
| 191 |
188 190
|
eqtr2d |
⊢ ( 𝜑 → 𝐴 = ( ( 𝑂 ‘ ( var1 ‘ 𝐾 ) ) ‘ 𝐴 ) ) |
| 192 |
181 186 191
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑝 ∈ 𝑈 𝐴 = ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
| 193 |
11 192 7
|
elrnmptd |
⊢ ( 𝜑 → 𝐴 ∈ ran 𝐺 ) |
| 194 |
193
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ran 𝐺 ) |
| 195 |
97 194
|
unssd |
⊢ ( 𝜑 → ( 𝐹 ∪ { 𝐴 } ) ⊆ ran 𝐺 ) |
| 196 |
20 45 178 195
|
fldgenssp |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ⊆ ran 𝐺 ) |
| 197 |
44 196
|
eqssd |
⊢ ( 𝜑 → ran 𝐺 = ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
| 198 |
2 20
|
ressbas2 |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ⊆ ( Base ‘ 𝐸 ) → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) = ( Base ‘ 𝐿 ) ) |
| 199 |
115 198
|
syl |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) = ( Base ‘ 𝐿 ) ) |
| 200 |
|
eqidd |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) |
| 201 |
20 45 56
|
fldgenssid |
⊢ ( 𝜑 → ( 𝐹 ∪ { 𝐴 } ) ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
| 202 |
201
|
unssad |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
| 203 |
202 199
|
sseqtrd |
⊢ ( 𝜑 → 𝐹 ⊆ ( Base ‘ 𝐿 ) ) |
| 204 |
200 203
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝐿 ) = ( Base ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) ) |
| 205 |
197 199 204
|
3eqtrd |
⊢ ( 𝜑 → ran 𝐺 = ( Base ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) ) |
| 206 |
|
imaeq2 |
⊢ ( 𝑞 = 𝑝 → ( 𝐺 “ 𝑞 ) = ( 𝐺 “ 𝑝 ) ) |
| 207 |
206
|
unieqd |
⊢ ( 𝑞 = 𝑝 → ∪ ( 𝐺 “ 𝑞 ) = ∪ ( 𝐺 “ 𝑝 ) ) |
| 208 |
207
|
cbvmptv |
⊢ ( 𝑞 ∈ ( Base ‘ ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) ) ) ↦ ∪ ( 𝐺 “ 𝑞 ) ) = ( 𝑝 ∈ ( Base ‘ ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) ) ) ↦ ∪ ( 𝐺 “ 𝑝 ) ) |
| 209 |
27 28 29 30 205 208
|
lmhmqusker |
⊢ ( 𝜑 → ( 𝑞 ∈ ( Base ‘ ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) ) ) ↦ ∪ ( 𝐺 “ 𝑞 ) ) ∈ ( ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) ) LMIso ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) ) |
| 210 |
|
eqidd |
⊢ ( 𝜑 → ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) ) |
| 211 |
200 210 203
|
sralmod0 |
⊢ ( 𝜑 → ( 0g ‘ 𝐿 ) = ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) ) |
| 212 |
211
|
sneqd |
⊢ ( 𝜑 → { ( 0g ‘ 𝐿 ) } = { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) |
| 213 |
212
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) = ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) |
| 214 |
13 213
|
eqtrid |
⊢ ( 𝜑 → 𝑍 = ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) |
| 215 |
214
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 ~QG 𝑍 ) = ( 𝑃 ~QG ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) ) |
| 216 |
215
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) ) = ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) ) ) |
| 217 |
14 216
|
eqtrid |
⊢ ( 𝜑 → 𝑄 = ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) ) ) |
| 218 |
217
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑄 ) = ( Base ‘ ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) ) ) ) |
| 219 |
218
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐺 “ 𝑝 ) ) = ( 𝑝 ∈ ( Base ‘ ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) ) ) ↦ ∪ ( 𝐺 “ 𝑝 ) ) ) |
| 220 |
219 15 208
|
3eqtr4g |
⊢ ( 𝜑 → 𝐽 = ( 𝑞 ∈ ( Base ‘ ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) ) ) ↦ ∪ ( 𝐺 “ 𝑞 ) ) ) |
| 221 |
217
|
oveq1d |
⊢ ( 𝜑 → ( 𝑄 LMIso ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) = ( ( 𝑃 /s ( 𝑃 ~QG ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) ) LMIso ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) ) |
| 222 |
209 220 221
|
3eltr4d |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝑄 LMIso ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) ) |
| 223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
algextdeglem3 |
⊢ ( 𝜑 → 𝑄 ∈ LVec ) |
| 224 |
222 223
|
lmimdim |
⊢ ( 𝜑 → ( dim ‘ 𝑄 ) = ( dim ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) ) |
| 225 |
20 5 56
|
fldgenfld |
⊢ ( 𝜑 → ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ∈ Field ) |
| 226 |
2 225
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ Field ) |
| 227 |
1 2 3 4 5 6 7
|
algextdeglem1 |
⊢ ( 𝜑 → ( 𝐿 ↾s 𝐹 ) = 𝐾 ) |
| 228 |
24
|
oveq2d |
⊢ ( 𝜑 → ( 𝐿 ↾s 𝐹 ) = ( 𝐿 ↾s ( Base ‘ 𝐾 ) ) ) |
| 229 |
227 228
|
eqtr3d |
⊢ ( 𝜑 → 𝐾 = ( 𝐿 ↾s ( Base ‘ 𝐾 ) ) ) |
| 230 |
2
|
subsubrg |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) → ( 𝐹 ∈ ( SubRing ‘ 𝐿 ) ↔ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝐹 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ) ) |
| 231 |
230
|
biimpar |
⊢ ( ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝐹 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ) → 𝐹 ∈ ( SubRing ‘ 𝐿 ) ) |
| 232 |
60 18 202 231
|
syl12anc |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐿 ) ) |
| 233 |
24 232
|
eqeltrrd |
⊢ ( 𝜑 → ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐿 ) ) |
| 234 |
|
brfldext |
⊢ ( ( 𝐿 ∈ Field ∧ 𝐾 ∈ Field ) → ( 𝐿 /FldExt 𝐾 ↔ ( 𝐾 = ( 𝐿 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐿 ) ) ) ) |
| 235 |
234
|
biimpar |
⊢ ( ( ( 𝐿 ∈ Field ∧ 𝐾 ∈ Field ) ∧ ( 𝐾 = ( 𝐿 ↾s ( Base ‘ 𝐾 ) ) ∧ ( Base ‘ 𝐾 ) ∈ ( SubRing ‘ 𝐿 ) ) ) → 𝐿 /FldExt 𝐾 ) |
| 236 |
226 156 229 233 235
|
syl22anc |
⊢ ( 𝜑 → 𝐿 /FldExt 𝐾 ) |
| 237 |
|
extdgval |
⊢ ( 𝐿 /FldExt 𝐾 → ( 𝐿 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ 𝐿 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 238 |
236 237
|
syl |
⊢ ( 𝜑 → ( 𝐿 [:] 𝐾 ) = ( dim ‘ ( ( subringAlg ‘ 𝐿 ) ‘ ( Base ‘ 𝐾 ) ) ) ) |
| 239 |
26 224 238
|
3eqtr4d |
⊢ ( 𝜑 → ( dim ‘ 𝑄 ) = ( 𝐿 [:] 𝐾 ) ) |