Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝐹 ) |
2 |
|
algextdeg.l |
⊢ 𝐿 = ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
3 |
|
algextdeg.d |
⊢ 𝐷 = ( deg1 ‘ 𝐸 ) |
4 |
|
algextdeg.m |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
5 |
|
algextdeg.f |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
6 |
|
algextdeg.e |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
7 |
|
algextdeg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
8 |
|
algextdeglem.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
9 |
|
algextdeglem.y |
⊢ 𝑃 = ( Poly1 ‘ 𝐾 ) |
10 |
|
algextdeglem.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
11 |
|
algextdeglem.g |
⊢ 𝐺 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
12 |
|
algextdeglem.n |
⊢ 𝑁 = ( 𝑥 ∈ 𝑈 ↦ [ 𝑥 ] ( 𝑃 ~QG 𝑍 ) ) |
13 |
|
algextdeglem.z |
⊢ 𝑍 = ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) |
14 |
|
algextdeglem.q |
⊢ 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) ) |
15 |
|
algextdeglem.j |
⊢ 𝐽 = ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐺 “ 𝑝 ) ) |
16 |
1
|
fveq2i |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
17 |
9 16
|
eqtri |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
18 |
|
issdrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
19 |
6 18
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
20 |
19
|
simp3d |
⊢ ( 𝜑 → ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) |
21 |
17 20
|
ply1lvec |
⊢ ( 𝜑 → 𝑃 ∈ LVec ) |
22 |
|
eqidd |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) |
23 |
|
eqidd |
⊢ ( 𝜑 → ( 0g ‘ 𝐿 ) = ( 0g ‘ 𝐿 ) ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
25 |
5
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
26 |
19
|
simp2d |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
27 |
|
subrgsubg |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → 𝐹 ∈ ( SubGrp ‘ 𝐸 ) ) |
28 |
24
|
subgss |
⊢ ( 𝐹 ∈ ( SubGrp ‘ 𝐸 ) → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
29 |
26 27 28
|
3syl |
⊢ ( 𝜑 → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
30 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
31 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
32 |
8 1 24 30 31 26
|
irngssv |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
33 |
32 7
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐸 ) ) |
34 |
33
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ( Base ‘ 𝐸 ) ) |
35 |
29 34
|
unssd |
⊢ ( 𝜑 → ( 𝐹 ∪ { 𝐴 } ) ⊆ ( Base ‘ 𝐸 ) ) |
36 |
24 25 35
|
fldgenssid |
⊢ ( 𝜑 → ( 𝐹 ∪ { 𝐴 } ) ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
37 |
36
|
unssad |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
38 |
24 25 35
|
fldgenssv |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ⊆ ( Base ‘ 𝐸 ) ) |
39 |
2 24
|
ressbas2 |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ⊆ ( Base ‘ 𝐸 ) → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) = ( Base ‘ 𝐿 ) ) |
40 |
38 39
|
syl |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) = ( Base ‘ 𝐿 ) ) |
41 |
37 40
|
sseqtrd |
⊢ ( 𝜑 → 𝐹 ⊆ ( Base ‘ 𝐿 ) ) |
42 |
22 23 41
|
sralmod0 |
⊢ ( 𝜑 → ( 0g ‘ 𝐿 ) = ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) ) |
43 |
42
|
sneqd |
⊢ ( 𝜑 → { ( 0g ‘ 𝐿 ) } = { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) |
44 |
43
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) = ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) |
45 |
13 44
|
eqtrid |
⊢ ( 𝜑 → 𝑍 = ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ) |
46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
algextdeglem2 |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑃 LMHom ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) ) |
47 |
|
eqid |
⊢ ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) = ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) |
48 |
|
eqid |
⊢ ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) = ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) |
49 |
|
eqid |
⊢ ( LSubSp ‘ 𝑃 ) = ( LSubSp ‘ 𝑃 ) |
50 |
47 48 49
|
lmhmkerlss |
⊢ ( 𝐺 ∈ ( 𝑃 LMHom ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) → ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ∈ ( LSubSp ‘ 𝑃 ) ) |
51 |
46 50
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐺 “ { ( 0g ‘ ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) } ) ∈ ( LSubSp ‘ 𝑃 ) ) |
52 |
45 51
|
eqeltrd |
⊢ ( 𝜑 → 𝑍 ∈ ( LSubSp ‘ 𝑃 ) ) |
53 |
14 21 52
|
quslvec |
⊢ ( 𝜑 → 𝑄 ∈ LVec ) |