Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
⊢ 𝐾 = ( 𝐸 ↾s 𝐹 ) |
2 |
|
algextdeg.l |
⊢ 𝐿 = ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
3 |
|
algextdeg.d |
⊢ 𝐷 = ( deg1 ‘ 𝐸 ) |
4 |
|
algextdeg.m |
⊢ 𝑀 = ( 𝐸 minPoly 𝐹 ) |
5 |
|
algextdeg.f |
⊢ ( 𝜑 → 𝐸 ∈ Field ) |
6 |
|
algextdeg.e |
⊢ ( 𝜑 → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
7 |
|
algextdeg.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐸 IntgRing 𝐹 ) ) |
8 |
|
algextdeglem.o |
⊢ 𝑂 = ( 𝐸 evalSub1 𝐹 ) |
9 |
|
algextdeglem.y |
⊢ 𝑃 = ( Poly1 ‘ 𝐾 ) |
10 |
|
algextdeglem.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
11 |
|
algextdeglem.g |
⊢ 𝐺 = ( 𝑝 ∈ 𝑈 ↦ ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ) |
12 |
|
algextdeglem.n |
⊢ 𝑁 = ( 𝑥 ∈ 𝑈 ↦ [ 𝑥 ] ( 𝑃 ~QG 𝑍 ) ) |
13 |
|
algextdeglem.z |
⊢ 𝑍 = ( ◡ 𝐺 “ { ( 0g ‘ 𝐿 ) } ) |
14 |
|
algextdeglem.q |
⊢ 𝑄 = ( 𝑃 /s ( 𝑃 ~QG 𝑍 ) ) |
15 |
|
algextdeglem.j |
⊢ 𝐽 = ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐺 “ 𝑝 ) ) |
16 |
|
issdrg |
⊢ ( 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
17 |
6 16
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ DivRing ∧ 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s 𝐹 ) ∈ DivRing ) ) |
18 |
17
|
simp2d |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝐸 ) ) |
19 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) = ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) |
20 |
19
|
sralmod |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ∈ LMod ) |
21 |
18 20
|
syl |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ∈ LMod ) |
22 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
23 |
|
eqid |
⊢ ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) = ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
24 |
5
|
flddrngd |
⊢ ( 𝜑 → 𝐸 ∈ DivRing ) |
25 |
|
subrgsubg |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) → 𝐹 ∈ ( SubGrp ‘ 𝐸 ) ) |
26 |
22
|
subgss |
⊢ ( 𝐹 ∈ ( SubGrp ‘ 𝐸 ) → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
27 |
18 25 26
|
3syl |
⊢ ( 𝜑 → 𝐹 ⊆ ( Base ‘ 𝐸 ) ) |
28 |
|
eqid |
⊢ ( 0g ‘ 𝐸 ) = ( 0g ‘ 𝐸 ) |
29 |
5
|
fldcrngd |
⊢ ( 𝜑 → 𝐸 ∈ CRing ) |
30 |
8 1 22 28 29 18
|
irngssv |
⊢ ( 𝜑 → ( 𝐸 IntgRing 𝐹 ) ⊆ ( Base ‘ 𝐸 ) ) |
31 |
30 7
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐸 ) ) |
32 |
31
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ ( Base ‘ 𝐸 ) ) |
33 |
27 32
|
unssd |
⊢ ( 𝜑 → ( 𝐹 ∪ { 𝐴 } ) ⊆ ( Base ‘ 𝐸 ) ) |
34 |
22 24 33
|
fldgensdrg |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ 𝐸 ) ) |
35 |
|
issdrg |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubDRing ‘ 𝐸 ) ↔ ( 𝐸 ∈ DivRing ∧ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ∈ DivRing ) ) |
36 |
34 35
|
sylib |
⊢ ( 𝜑 → ( 𝐸 ∈ DivRing ∧ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ∈ DivRing ) ) |
37 |
36
|
simp2d |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) ) |
38 |
22 24 33
|
fldgenssid |
⊢ ( 𝜑 → ( 𝐹 ∪ { 𝐴 } ) ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
39 |
38
|
unssad |
⊢ ( 𝜑 → 𝐹 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
40 |
23
|
subsubrg |
⊢ ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) → ( 𝐹 ∈ ( SubRing ‘ ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ) ↔ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝐹 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ) ) |
41 |
40
|
biimpar |
⊢ ( ( ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( SubRing ‘ 𝐸 ) ∧ ( 𝐹 ∈ ( SubRing ‘ 𝐸 ) ∧ 𝐹 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ) → 𝐹 ∈ ( SubRing ‘ ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ) ) |
42 |
37 18 39 41
|
syl12anc |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ ( 𝐸 ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ) ) |
43 |
19 22 23 37 42
|
lsssra |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( LSubSp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) |
44 |
1
|
fveq2i |
⊢ ( Poly1 ‘ 𝐾 ) = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
45 |
9 44
|
eqtri |
⊢ 𝑃 = ( Poly1 ‘ ( 𝐸 ↾s 𝐹 ) ) |
46 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝐸 ∈ Field ) |
47 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝐹 ∈ ( SubDRing ‘ 𝐸 ) ) |
48 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝐴 ∈ ( Base ‘ 𝐸 ) ) |
49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → 𝑝 ∈ 𝑈 ) |
50 |
22 8 45 10 46 47 48 49
|
evls1fldgencl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑈 ) → ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
51 |
50
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑈 ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
52 |
11
|
rnmptss |
⊢ ( ∀ 𝑝 ∈ 𝑈 ( ( 𝑂 ‘ 𝑝 ) ‘ 𝐴 ) ∈ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) → ran 𝐺 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
53 |
51 52
|
syl |
⊢ ( 𝜑 → ran 𝐺 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
54 |
8 45 22 10 29 18 31 11 19
|
evls1maplmhm |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑃 LMHom ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) |
55 |
|
eqid |
⊢ ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) |
56 |
|
eqid |
⊢ ( LSubSp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) = ( LSubSp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) |
57 |
55 56
|
reslmhm2b |
⊢ ( ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ∈ LMod ∧ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( LSubSp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ∧ ran 𝐺 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) → ( 𝐺 ∈ ( 𝑃 LMHom ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ↔ 𝐺 ∈ ( 𝑃 LMHom ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ) ) ) |
58 |
57
|
biimpa |
⊢ ( ( ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ∈ LMod ∧ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ∈ ( LSubSp ‘ ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ∧ ran 𝐺 ⊆ ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ∧ 𝐺 ∈ ( 𝑃 LMHom ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ) ) → 𝐺 ∈ ( 𝑃 LMHom ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ) ) |
59 |
21 43 53 54 58
|
syl31anc |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑃 LMHom ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ) ) |
60 |
22 24 33
|
fldgenssv |
⊢ ( 𝜑 → ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ⊆ ( Base ‘ 𝐸 ) ) |
61 |
22 2 60 39 5
|
resssra |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) = ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ) |
62 |
61
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 LMHom ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) = ( 𝑃 LMHom ( ( ( subringAlg ‘ 𝐸 ) ‘ 𝐹 ) ↾s ( 𝐸 fldGen ( 𝐹 ∪ { 𝐴 } ) ) ) ) ) |
63 |
59 62
|
eleqtrrd |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑃 LMHom ( ( subringAlg ‘ 𝐿 ) ‘ 𝐹 ) ) ) |