| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsssra.w |
⊢ 𝑊 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) |
| 2 |
|
lsssra.a |
⊢ 𝐴 = ( Base ‘ 𝑅 ) |
| 3 |
|
lsssra.s |
⊢ 𝑆 = ( 𝑅 ↾s 𝐵 ) |
| 4 |
|
lsssra.b |
⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ 𝑅 ) ) |
| 5 |
|
lsssra.c |
⊢ ( 𝜑 → 𝐶 ∈ ( SubRing ‘ 𝑆 ) ) |
| 6 |
3
|
subsubrg |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) → ( 𝐶 ∈ ( SubRing ‘ 𝑆 ) ↔ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐶 ⊆ 𝐵 ) ) ) |
| 7 |
6
|
biimpa |
⊢ ( ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐶 ∈ ( SubRing ‘ 𝑆 ) ) → ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐶 ⊆ 𝐵 ) ) |
| 8 |
4 5 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝐶 ⊆ 𝐵 ) ) |
| 9 |
8
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ( SubRing ‘ 𝑅 ) ) |
| 10 |
1
|
sralmod |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑅 ) → 𝑊 ∈ LMod ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 12 |
2
|
subrgss |
⊢ ( 𝐵 ∈ ( SubRing ‘ 𝑅 ) → 𝐵 ⊆ 𝐴 ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
| 14 |
1
|
a1i |
⊢ ( 𝜑 → 𝑊 = ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ) |
| 15 |
8
|
simprd |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐵 ) |
| 16 |
15 13
|
sstrd |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
| 17 |
16 2
|
sseqtrdi |
⊢ ( 𝜑 → 𝐶 ⊆ ( Base ‘ 𝑅 ) ) |
| 18 |
14 17
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑊 ) ) |
| 19 |
2 18
|
eqtrid |
⊢ ( 𝜑 → 𝐴 = ( Base ‘ 𝑊 ) ) |
| 20 |
13 19
|
sseqtrd |
⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ 𝑊 ) ) |
| 21 |
4
|
elfvexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 22 |
2 3 13 15 21
|
resssra |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 ) ) |
| 23 |
1
|
oveq1i |
⊢ ( 𝑊 ↾s 𝐵 ) = ( ( ( subringAlg ‘ 𝑅 ) ‘ 𝐶 ) ↾s 𝐵 ) |
| 24 |
22 23
|
eqtr4di |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) = ( 𝑊 ↾s 𝐵 ) ) |
| 25 |
|
eqid |
⊢ ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) = ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) |
| 26 |
25
|
sralmod |
⊢ ( 𝐶 ∈ ( SubRing ‘ 𝑆 ) → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) ∈ LMod ) |
| 27 |
5 26
|
syl |
⊢ ( 𝜑 → ( ( subringAlg ‘ 𝑆 ) ‘ 𝐶 ) ∈ LMod ) |
| 28 |
24 27
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑊 ↾s 𝐵 ) ∈ LMod ) |
| 29 |
|
eqid |
⊢ ( 𝑊 ↾s 𝐵 ) = ( 𝑊 ↾s 𝐵 ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 31 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 32 |
29 30 31
|
islss3 |
⊢ ( 𝑊 ∈ LMod → ( 𝐵 ∈ ( LSubSp ‘ 𝑊 ) ↔ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑊 ↾s 𝐵 ) ∈ LMod ) ) ) |
| 33 |
32
|
biimpar |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐵 ⊆ ( Base ‘ 𝑊 ) ∧ ( 𝑊 ↾s 𝐵 ) ∈ LMod ) ) → 𝐵 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 34 |
11 20 28 33
|
syl12anc |
⊢ ( 𝜑 → 𝐵 ∈ ( LSubSp ‘ 𝑊 ) ) |