| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsssra.w |
|
| 2 |
|
lsssra.a |
|
| 3 |
|
lsssra.s |
|
| 4 |
|
lsssra.b |
|
| 5 |
|
lsssra.c |
|
| 6 |
3
|
subsubrg |
|
| 7 |
6
|
biimpa |
|
| 8 |
4 5 7
|
syl2anc |
|
| 9 |
8
|
simpld |
|
| 10 |
1
|
sralmod |
|
| 11 |
9 10
|
syl |
|
| 12 |
2
|
subrgss |
|
| 13 |
4 12
|
syl |
|
| 14 |
1
|
a1i |
|
| 15 |
8
|
simprd |
|
| 16 |
15 13
|
sstrd |
|
| 17 |
16 2
|
sseqtrdi |
|
| 18 |
14 17
|
srabase |
|
| 19 |
2 18
|
eqtrid |
|
| 20 |
13 19
|
sseqtrd |
|
| 21 |
4
|
elfvexd |
|
| 22 |
2 3 13 15 21
|
resssra |
|
| 23 |
1
|
oveq1i |
|
| 24 |
22 23
|
eqtr4di |
|
| 25 |
|
eqid |
|
| 26 |
25
|
sralmod |
|
| 27 |
5 26
|
syl |
|
| 28 |
24 27
|
eqeltrrd |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
|
eqid |
|
| 32 |
29 30 31
|
islss3 |
|
| 33 |
32
|
biimpar |
|
| 34 |
11 20 28 33
|
syl12anc |
|