Metamath Proof Explorer


Theorem srapwov

Description: The "power" operation on a subring algebra. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses srapwov.a A = subringAlg W S
srapwov.w φ W Ring
srapwov.s φ S Base W
Assertion srapwov φ mulGrp W = mulGrp A

Proof

Step Hyp Ref Expression
1 srapwov.a A = subringAlg W S
2 srapwov.w φ W Ring
3 srapwov.s φ S Base W
4 eqid mulGrp W = mulGrp W
5 eqid mulGrp A = mulGrp A
6 eqid mulGrp W = mulGrp W
7 eqid Base W = Base W
8 6 7 mgpbas Base W = Base mulGrp W
9 8 a1i φ Base W = Base mulGrp W
10 1 a1i φ A = subringAlg W S
11 10 3 srabase φ Base W = Base A
12 eqid mulGrp A = mulGrp A
13 eqid Base A = Base A
14 12 13 mgpbas Base A = Base mulGrp A
15 11 14 eqtrdi φ Base W = Base mulGrp A
16 ssidd φ Base W Base W
17 eqid W = W
18 6 17 mgpplusg W = + mulGrp W
19 18 eqcomi + mulGrp W = W
20 2 adantr φ x Base W y Base W W Ring
21 simprl φ x Base W y Base W x Base W
22 simprr φ x Base W y Base W y Base W
23 7 19 20 21 22 ringcld φ x Base W y Base W x + mulGrp W y Base W
24 10 3 sramulr φ W = A
25 1 fveq2i mulGrp A = mulGrp subringAlg W S
26 1 fveq2i A = subringAlg W S
27 25 26 mgpplusg A = + mulGrp A
28 24 18 27 3eqtr3g φ + mulGrp W = + mulGrp A
29 28 oveqdr φ x Base W y Base W x + mulGrp W y = x + mulGrp A y
30 4 5 9 15 16 23 29 mulgpropd φ mulGrp W = mulGrp A