| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srapwov.a |
⊢ 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) |
| 2 |
|
srapwov.w |
⊢ ( 𝜑 → 𝑊 ∈ Ring ) |
| 3 |
|
srapwov.s |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 4 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑊 ) ) = ( .g ‘ ( mulGrp ‘ 𝑊 ) ) |
| 5 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝐴 ) ) = ( .g ‘ ( mulGrp ‘ 𝐴 ) ) |
| 6 |
|
eqid |
⊢ ( mulGrp ‘ 𝑊 ) = ( mulGrp ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 8 |
6 7
|
mgpbas |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ ( mulGrp ‘ 𝑊 ) ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ ( mulGrp ‘ 𝑊 ) ) ) |
| 10 |
1
|
a1i |
⊢ ( 𝜑 → 𝐴 = ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
| 11 |
10 3
|
srabase |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐴 ) ) |
| 12 |
|
eqid |
⊢ ( mulGrp ‘ 𝐴 ) = ( mulGrp ‘ 𝐴 ) |
| 13 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 14 |
12 13
|
mgpbas |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ ( mulGrp ‘ 𝐴 ) ) |
| 15 |
11 14
|
eqtrdi |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ ( mulGrp ‘ 𝐴 ) ) ) |
| 16 |
|
ssidd |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) ⊆ ( Base ‘ 𝑊 ) ) |
| 17 |
|
eqid |
⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) |
| 18 |
6 17
|
mgpplusg |
⊢ ( .r ‘ 𝑊 ) = ( +g ‘ ( mulGrp ‘ 𝑊 ) ) |
| 19 |
18
|
eqcomi |
⊢ ( +g ‘ ( mulGrp ‘ 𝑊 ) ) = ( .r ‘ 𝑊 ) |
| 20 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ Ring ) |
| 21 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑊 ) ) |
| 22 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 23 |
7 19 20 21 22
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑊 ) ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 24 |
10 3
|
sramulr |
⊢ ( 𝜑 → ( .r ‘ 𝑊 ) = ( .r ‘ 𝐴 ) ) |
| 25 |
1
|
fveq2i |
⊢ ( mulGrp ‘ 𝐴 ) = ( mulGrp ‘ ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
| 26 |
1
|
fveq2i |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ ( ( subringAlg ‘ 𝑊 ) ‘ 𝑆 ) ) |
| 27 |
25 26
|
mgpplusg |
⊢ ( .r ‘ 𝐴 ) = ( +g ‘ ( mulGrp ‘ 𝐴 ) ) |
| 28 |
24 18 27
|
3eqtr3g |
⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑊 ) ) = ( +g ‘ ( mulGrp ‘ 𝐴 ) ) ) |
| 29 |
28
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑊 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝐴 ) ) 𝑦 ) ) |
| 30 |
4 5 9 15 16 23 29
|
mulgpropd |
⊢ ( 𝜑 → ( .g ‘ ( mulGrp ‘ 𝑊 ) ) = ( .g ‘ ( mulGrp ‘ 𝐴 ) ) ) |