| Step |
Hyp |
Ref |
Expression |
| 1 |
|
srapwov.a |
|- A = ( ( subringAlg ` W ) ` S ) |
| 2 |
|
srapwov.w |
|- ( ph -> W e. Ring ) |
| 3 |
|
srapwov.s |
|- ( ph -> S C_ ( Base ` W ) ) |
| 4 |
|
eqid |
|- ( .g ` ( mulGrp ` W ) ) = ( .g ` ( mulGrp ` W ) ) |
| 5 |
|
eqid |
|- ( .g ` ( mulGrp ` A ) ) = ( .g ` ( mulGrp ` A ) ) |
| 6 |
|
eqid |
|- ( mulGrp ` W ) = ( mulGrp ` W ) |
| 7 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 8 |
6 7
|
mgpbas |
|- ( Base ` W ) = ( Base ` ( mulGrp ` W ) ) |
| 9 |
8
|
a1i |
|- ( ph -> ( Base ` W ) = ( Base ` ( mulGrp ` W ) ) ) |
| 10 |
1
|
a1i |
|- ( ph -> A = ( ( subringAlg ` W ) ` S ) ) |
| 11 |
10 3
|
srabase |
|- ( ph -> ( Base ` W ) = ( Base ` A ) ) |
| 12 |
|
eqid |
|- ( mulGrp ` A ) = ( mulGrp ` A ) |
| 13 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 14 |
12 13
|
mgpbas |
|- ( Base ` A ) = ( Base ` ( mulGrp ` A ) ) |
| 15 |
11 14
|
eqtrdi |
|- ( ph -> ( Base ` W ) = ( Base ` ( mulGrp ` A ) ) ) |
| 16 |
|
ssidd |
|- ( ph -> ( Base ` W ) C_ ( Base ` W ) ) |
| 17 |
|
eqid |
|- ( .r ` W ) = ( .r ` W ) |
| 18 |
6 17
|
mgpplusg |
|- ( .r ` W ) = ( +g ` ( mulGrp ` W ) ) |
| 19 |
18
|
eqcomi |
|- ( +g ` ( mulGrp ` W ) ) = ( .r ` W ) |
| 20 |
2
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> W e. Ring ) |
| 21 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> x e. ( Base ` W ) ) |
| 22 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
| 23 |
7 19 20 21 22
|
ringcld |
|- ( ( ph /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` ( mulGrp ` W ) ) y ) e. ( Base ` W ) ) |
| 24 |
10 3
|
sramulr |
|- ( ph -> ( .r ` W ) = ( .r ` A ) ) |
| 25 |
1
|
fveq2i |
|- ( mulGrp ` A ) = ( mulGrp ` ( ( subringAlg ` W ) ` S ) ) |
| 26 |
1
|
fveq2i |
|- ( .r ` A ) = ( .r ` ( ( subringAlg ` W ) ` S ) ) |
| 27 |
25 26
|
mgpplusg |
|- ( .r ` A ) = ( +g ` ( mulGrp ` A ) ) |
| 28 |
24 18 27
|
3eqtr3g |
|- ( ph -> ( +g ` ( mulGrp ` W ) ) = ( +g ` ( mulGrp ` A ) ) ) |
| 29 |
28
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` W ) /\ y e. ( Base ` W ) ) ) -> ( x ( +g ` ( mulGrp ` W ) ) y ) = ( x ( +g ` ( mulGrp ` A ) ) y ) ) |
| 30 |
4 5 9 15 16 23 29
|
mulgpropd |
|- ( ph -> ( .g ` ( mulGrp ` W ) ) = ( .g ` ( mulGrp ` A ) ) ) |