Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
|- K = ( E |`s F ) |
2 |
|
algextdeg.l |
|- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) |
3 |
|
algextdeg.d |
|- D = ( deg1 ` E ) |
4 |
|
algextdeg.m |
|- M = ( E minPoly F ) |
5 |
|
algextdeg.f |
|- ( ph -> E e. Field ) |
6 |
|
algextdeg.e |
|- ( ph -> F e. ( SubDRing ` E ) ) |
7 |
|
algextdeg.a |
|- ( ph -> A e. ( E IntgRing F ) ) |
8 |
|
algextdeglem.o |
|- O = ( E evalSub1 F ) |
9 |
|
algextdeglem.y |
|- P = ( Poly1 ` K ) |
10 |
|
algextdeglem.u |
|- U = ( Base ` P ) |
11 |
|
algextdeglem.g |
|- G = ( p e. U |-> ( ( O ` p ) ` A ) ) |
12 |
|
algextdeglem.n |
|- N = ( x e. U |-> [ x ] ( P ~QG Z ) ) |
13 |
|
algextdeglem.z |
|- Z = ( `' G " { ( 0g ` L ) } ) |
14 |
|
algextdeglem.q |
|- Q = ( P /s ( P ~QG Z ) ) |
15 |
|
algextdeglem.j |
|- J = ( p e. ( Base ` Q ) |-> U. ( G " p ) ) |
16 |
|
issdrg |
|- ( F e. ( SubDRing ` E ) <-> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
17 |
6 16
|
sylib |
|- ( ph -> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
18 |
17
|
simp2d |
|- ( ph -> F e. ( SubRing ` E ) ) |
19 |
|
eqid |
|- ( ( subringAlg ` E ) ` F ) = ( ( subringAlg ` E ) ` F ) |
20 |
19
|
sralmod |
|- ( F e. ( SubRing ` E ) -> ( ( subringAlg ` E ) ` F ) e. LMod ) |
21 |
18 20
|
syl |
|- ( ph -> ( ( subringAlg ` E ) ` F ) e. LMod ) |
22 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
23 |
|
eqid |
|- ( E |`s ( E fldGen ( F u. { A } ) ) ) = ( E |`s ( E fldGen ( F u. { A } ) ) ) |
24 |
5
|
flddrngd |
|- ( ph -> E e. DivRing ) |
25 |
|
subrgsubg |
|- ( F e. ( SubRing ` E ) -> F e. ( SubGrp ` E ) ) |
26 |
22
|
subgss |
|- ( F e. ( SubGrp ` E ) -> F C_ ( Base ` E ) ) |
27 |
18 25 26
|
3syl |
|- ( ph -> F C_ ( Base ` E ) ) |
28 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
29 |
5
|
fldcrngd |
|- ( ph -> E e. CRing ) |
30 |
8 1 22 28 29 18
|
irngssv |
|- ( ph -> ( E IntgRing F ) C_ ( Base ` E ) ) |
31 |
30 7
|
sseldd |
|- ( ph -> A e. ( Base ` E ) ) |
32 |
31
|
snssd |
|- ( ph -> { A } C_ ( Base ` E ) ) |
33 |
27 32
|
unssd |
|- ( ph -> ( F u. { A } ) C_ ( Base ` E ) ) |
34 |
22 24 33
|
fldgensdrg |
|- ( ph -> ( E fldGen ( F u. { A } ) ) e. ( SubDRing ` E ) ) |
35 |
|
issdrg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubDRing ` E ) <-> ( E e. DivRing /\ ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ( E |`s ( E fldGen ( F u. { A } ) ) ) e. DivRing ) ) |
36 |
34 35
|
sylib |
|- ( ph -> ( E e. DivRing /\ ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ( E |`s ( E fldGen ( F u. { A } ) ) ) e. DivRing ) ) |
37 |
36
|
simp2d |
|- ( ph -> ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) ) |
38 |
22 24 33
|
fldgenssid |
|- ( ph -> ( F u. { A } ) C_ ( E fldGen ( F u. { A } ) ) ) |
39 |
38
|
unssad |
|- ( ph -> F C_ ( E fldGen ( F u. { A } ) ) ) |
40 |
23
|
subsubrg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) -> ( F e. ( SubRing ` ( E |`s ( E fldGen ( F u. { A } ) ) ) ) <-> ( F e. ( SubRing ` E ) /\ F C_ ( E fldGen ( F u. { A } ) ) ) ) ) |
41 |
40
|
biimpar |
|- ( ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ( F e. ( SubRing ` E ) /\ F C_ ( E fldGen ( F u. { A } ) ) ) ) -> F e. ( SubRing ` ( E |`s ( E fldGen ( F u. { A } ) ) ) ) ) |
42 |
37 18 39 41
|
syl12anc |
|- ( ph -> F e. ( SubRing ` ( E |`s ( E fldGen ( F u. { A } ) ) ) ) ) |
43 |
19 22 23 37 42
|
lsssra |
|- ( ph -> ( E fldGen ( F u. { A } ) ) e. ( LSubSp ` ( ( subringAlg ` E ) ` F ) ) ) |
44 |
1
|
fveq2i |
|- ( Poly1 ` K ) = ( Poly1 ` ( E |`s F ) ) |
45 |
9 44
|
eqtri |
|- P = ( Poly1 ` ( E |`s F ) ) |
46 |
5
|
adantr |
|- ( ( ph /\ p e. U ) -> E e. Field ) |
47 |
6
|
adantr |
|- ( ( ph /\ p e. U ) -> F e. ( SubDRing ` E ) ) |
48 |
31
|
adantr |
|- ( ( ph /\ p e. U ) -> A e. ( Base ` E ) ) |
49 |
|
simpr |
|- ( ( ph /\ p e. U ) -> p e. U ) |
50 |
22 8 45 10 46 47 48 49
|
evls1fldgencl |
|- ( ( ph /\ p e. U ) -> ( ( O ` p ) ` A ) e. ( E fldGen ( F u. { A } ) ) ) |
51 |
50
|
ralrimiva |
|- ( ph -> A. p e. U ( ( O ` p ) ` A ) e. ( E fldGen ( F u. { A } ) ) ) |
52 |
11
|
rnmptss |
|- ( A. p e. U ( ( O ` p ) ` A ) e. ( E fldGen ( F u. { A } ) ) -> ran G C_ ( E fldGen ( F u. { A } ) ) ) |
53 |
51 52
|
syl |
|- ( ph -> ran G C_ ( E fldGen ( F u. { A } ) ) ) |
54 |
8 45 22 10 29 18 31 11 19
|
evls1maplmhm |
|- ( ph -> G e. ( P LMHom ( ( subringAlg ` E ) ` F ) ) ) |
55 |
|
eqid |
|- ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) = ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) |
56 |
|
eqid |
|- ( LSubSp ` ( ( subringAlg ` E ) ` F ) ) = ( LSubSp ` ( ( subringAlg ` E ) ` F ) ) |
57 |
55 56
|
reslmhm2b |
|- ( ( ( ( subringAlg ` E ) ` F ) e. LMod /\ ( E fldGen ( F u. { A } ) ) e. ( LSubSp ` ( ( subringAlg ` E ) ` F ) ) /\ ran G C_ ( E fldGen ( F u. { A } ) ) ) -> ( G e. ( P LMHom ( ( subringAlg ` E ) ` F ) ) <-> G e. ( P LMHom ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) ) ) ) |
58 |
57
|
biimpa |
|- ( ( ( ( ( subringAlg ` E ) ` F ) e. LMod /\ ( E fldGen ( F u. { A } ) ) e. ( LSubSp ` ( ( subringAlg ` E ) ` F ) ) /\ ran G C_ ( E fldGen ( F u. { A } ) ) ) /\ G e. ( P LMHom ( ( subringAlg ` E ) ` F ) ) ) -> G e. ( P LMHom ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) ) ) |
59 |
21 43 53 54 58
|
syl31anc |
|- ( ph -> G e. ( P LMHom ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) ) ) |
60 |
22 24 33
|
fldgenssv |
|- ( ph -> ( E fldGen ( F u. { A } ) ) C_ ( Base ` E ) ) |
61 |
22 2 60 39 5
|
resssra |
|- ( ph -> ( ( subringAlg ` L ) ` F ) = ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) ) |
62 |
61
|
oveq2d |
|- ( ph -> ( P LMHom ( ( subringAlg ` L ) ` F ) ) = ( P LMHom ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) ) ) |
63 |
59 62
|
eleqtrrd |
|- ( ph -> G e. ( P LMHom ( ( subringAlg ` L ) ` F ) ) ) |