| Step |
Hyp |
Ref |
Expression |
| 1 |
|
algextdeg.k |
|- K = ( E |`s F ) |
| 2 |
|
algextdeg.l |
|- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) |
| 3 |
|
algextdeg.d |
|- D = ( deg1 ` E ) |
| 4 |
|
algextdeg.m |
|- M = ( E minPoly F ) |
| 5 |
|
algextdeg.f |
|- ( ph -> E e. Field ) |
| 6 |
|
algextdeg.e |
|- ( ph -> F e. ( SubDRing ` E ) ) |
| 7 |
|
algextdeg.a |
|- ( ph -> A e. ( E IntgRing F ) ) |
| 8 |
|
algextdeglem.o |
|- O = ( E evalSub1 F ) |
| 9 |
|
algextdeglem.y |
|- P = ( Poly1 ` K ) |
| 10 |
|
algextdeglem.u |
|- U = ( Base ` P ) |
| 11 |
|
algextdeglem.g |
|- G = ( p e. U |-> ( ( O ` p ) ` A ) ) |
| 12 |
|
algextdeglem.n |
|- N = ( x e. U |-> [ x ] ( P ~QG Z ) ) |
| 13 |
|
algextdeglem.z |
|- Z = ( `' G " { ( 0g ` L ) } ) |
| 14 |
|
algextdeglem.q |
|- Q = ( P /s ( P ~QG Z ) ) |
| 15 |
|
algextdeglem.j |
|- J = ( p e. ( Base ` Q ) |-> U. ( G " p ) ) |
| 16 |
|
issdrg |
|- ( F e. ( SubDRing ` E ) <-> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
| 17 |
6 16
|
sylib |
|- ( ph -> ( E e. DivRing /\ F e. ( SubRing ` E ) /\ ( E |`s F ) e. DivRing ) ) |
| 18 |
17
|
simp2d |
|- ( ph -> F e. ( SubRing ` E ) ) |
| 19 |
|
eqid |
|- ( ( subringAlg ` E ) ` F ) = ( ( subringAlg ` E ) ` F ) |
| 20 |
19
|
sralmod |
|- ( F e. ( SubRing ` E ) -> ( ( subringAlg ` E ) ` F ) e. LMod ) |
| 21 |
18 20
|
syl |
|- ( ph -> ( ( subringAlg ` E ) ` F ) e. LMod ) |
| 22 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 23 |
|
eqid |
|- ( E |`s ( E fldGen ( F u. { A } ) ) ) = ( E |`s ( E fldGen ( F u. { A } ) ) ) |
| 24 |
5
|
flddrngd |
|- ( ph -> E e. DivRing ) |
| 25 |
|
subrgsubg |
|- ( F e. ( SubRing ` E ) -> F e. ( SubGrp ` E ) ) |
| 26 |
22
|
subgss |
|- ( F e. ( SubGrp ` E ) -> F C_ ( Base ` E ) ) |
| 27 |
18 25 26
|
3syl |
|- ( ph -> F C_ ( Base ` E ) ) |
| 28 |
|
eqid |
|- ( 0g ` E ) = ( 0g ` E ) |
| 29 |
5
|
fldcrngd |
|- ( ph -> E e. CRing ) |
| 30 |
8 1 22 28 29 18
|
irngssv |
|- ( ph -> ( E IntgRing F ) C_ ( Base ` E ) ) |
| 31 |
30 7
|
sseldd |
|- ( ph -> A e. ( Base ` E ) ) |
| 32 |
31
|
snssd |
|- ( ph -> { A } C_ ( Base ` E ) ) |
| 33 |
27 32
|
unssd |
|- ( ph -> ( F u. { A } ) C_ ( Base ` E ) ) |
| 34 |
22 24 33
|
fldgensdrg |
|- ( ph -> ( E fldGen ( F u. { A } ) ) e. ( SubDRing ` E ) ) |
| 35 |
|
issdrg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubDRing ` E ) <-> ( E e. DivRing /\ ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ( E |`s ( E fldGen ( F u. { A } ) ) ) e. DivRing ) ) |
| 36 |
34 35
|
sylib |
|- ( ph -> ( E e. DivRing /\ ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ( E |`s ( E fldGen ( F u. { A } ) ) ) e. DivRing ) ) |
| 37 |
36
|
simp2d |
|- ( ph -> ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) ) |
| 38 |
22 24 33
|
fldgenssid |
|- ( ph -> ( F u. { A } ) C_ ( E fldGen ( F u. { A } ) ) ) |
| 39 |
38
|
unssad |
|- ( ph -> F C_ ( E fldGen ( F u. { A } ) ) ) |
| 40 |
23
|
subsubrg |
|- ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) -> ( F e. ( SubRing ` ( E |`s ( E fldGen ( F u. { A } ) ) ) ) <-> ( F e. ( SubRing ` E ) /\ F C_ ( E fldGen ( F u. { A } ) ) ) ) ) |
| 41 |
40
|
biimpar |
|- ( ( ( E fldGen ( F u. { A } ) ) e. ( SubRing ` E ) /\ ( F e. ( SubRing ` E ) /\ F C_ ( E fldGen ( F u. { A } ) ) ) ) -> F e. ( SubRing ` ( E |`s ( E fldGen ( F u. { A } ) ) ) ) ) |
| 42 |
37 18 39 41
|
syl12anc |
|- ( ph -> F e. ( SubRing ` ( E |`s ( E fldGen ( F u. { A } ) ) ) ) ) |
| 43 |
19 22 23 37 42
|
lsssra |
|- ( ph -> ( E fldGen ( F u. { A } ) ) e. ( LSubSp ` ( ( subringAlg ` E ) ` F ) ) ) |
| 44 |
1
|
fveq2i |
|- ( Poly1 ` K ) = ( Poly1 ` ( E |`s F ) ) |
| 45 |
9 44
|
eqtri |
|- P = ( Poly1 ` ( E |`s F ) ) |
| 46 |
5
|
adantr |
|- ( ( ph /\ p e. U ) -> E e. Field ) |
| 47 |
6
|
adantr |
|- ( ( ph /\ p e. U ) -> F e. ( SubDRing ` E ) ) |
| 48 |
31
|
adantr |
|- ( ( ph /\ p e. U ) -> A e. ( Base ` E ) ) |
| 49 |
|
simpr |
|- ( ( ph /\ p e. U ) -> p e. U ) |
| 50 |
22 8 45 10 46 47 48 49
|
evls1fldgencl |
|- ( ( ph /\ p e. U ) -> ( ( O ` p ) ` A ) e. ( E fldGen ( F u. { A } ) ) ) |
| 51 |
50
|
ralrimiva |
|- ( ph -> A. p e. U ( ( O ` p ) ` A ) e. ( E fldGen ( F u. { A } ) ) ) |
| 52 |
11
|
rnmptss |
|- ( A. p e. U ( ( O ` p ) ` A ) e. ( E fldGen ( F u. { A } ) ) -> ran G C_ ( E fldGen ( F u. { A } ) ) ) |
| 53 |
51 52
|
syl |
|- ( ph -> ran G C_ ( E fldGen ( F u. { A } ) ) ) |
| 54 |
8 45 22 10 29 18 31 11 19
|
evls1maplmhm |
|- ( ph -> G e. ( P LMHom ( ( subringAlg ` E ) ` F ) ) ) |
| 55 |
|
eqid |
|- ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) = ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) |
| 56 |
|
eqid |
|- ( LSubSp ` ( ( subringAlg ` E ) ` F ) ) = ( LSubSp ` ( ( subringAlg ` E ) ` F ) ) |
| 57 |
55 56
|
reslmhm2b |
|- ( ( ( ( subringAlg ` E ) ` F ) e. LMod /\ ( E fldGen ( F u. { A } ) ) e. ( LSubSp ` ( ( subringAlg ` E ) ` F ) ) /\ ran G C_ ( E fldGen ( F u. { A } ) ) ) -> ( G e. ( P LMHom ( ( subringAlg ` E ) ` F ) ) <-> G e. ( P LMHom ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) ) ) ) |
| 58 |
57
|
biimpa |
|- ( ( ( ( ( subringAlg ` E ) ` F ) e. LMod /\ ( E fldGen ( F u. { A } ) ) e. ( LSubSp ` ( ( subringAlg ` E ) ` F ) ) /\ ran G C_ ( E fldGen ( F u. { A } ) ) ) /\ G e. ( P LMHom ( ( subringAlg ` E ) ` F ) ) ) -> G e. ( P LMHom ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) ) ) |
| 59 |
21 43 53 54 58
|
syl31anc |
|- ( ph -> G e. ( P LMHom ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) ) ) |
| 60 |
22 24 33
|
fldgenssv |
|- ( ph -> ( E fldGen ( F u. { A } ) ) C_ ( Base ` E ) ) |
| 61 |
22 2 60 39 5
|
resssra |
|- ( ph -> ( ( subringAlg ` L ) ` F ) = ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) ) |
| 62 |
61
|
oveq2d |
|- ( ph -> ( P LMHom ( ( subringAlg ` L ) ` F ) ) = ( P LMHom ( ( ( subringAlg ` E ) ` F ) |`s ( E fldGen ( F u. { A } ) ) ) ) ) |
| 63 |
59 62
|
eleqtrrd |
|- ( ph -> G e. ( P LMHom ( ( subringAlg ` L ) ` F ) ) ) |