| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resssra.a |
|- A = ( Base ` R ) |
| 2 |
|
resssra.s |
|- S = ( R |`s B ) |
| 3 |
|
resssra.b |
|- ( ph -> B C_ A ) |
| 4 |
|
resssra.c |
|- ( ph -> C C_ B ) |
| 5 |
|
resssra.r |
|- ( ph -> R e. V ) |
| 6 |
|
eqidd |
|- ( ph -> ( ( subringAlg ` R ) ` C ) = ( ( subringAlg ` R ) ` C ) ) |
| 7 |
4 3
|
sstrd |
|- ( ph -> C C_ A ) |
| 8 |
7 1
|
sseqtrdi |
|- ( ph -> C C_ ( Base ` R ) ) |
| 9 |
6 8
|
srabase |
|- ( ph -> ( Base ` R ) = ( Base ` ( ( subringAlg ` R ) ` C ) ) ) |
| 10 |
1 9
|
eqtrid |
|- ( ph -> A = ( Base ` ( ( subringAlg ` R ) ` C ) ) ) |
| 11 |
10
|
oveq2d |
|- ( ph -> ( ( ( subringAlg ` R ) ` C ) |`s A ) = ( ( ( subringAlg ` R ) ` C ) |`s ( Base ` ( ( subringAlg ` R ) ` C ) ) ) ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) |`s A ) = ( ( ( subringAlg ` R ) ` C ) |`s ( Base ` ( ( subringAlg ` R ) ` C ) ) ) ) |
| 13 |
|
simpr |
|- ( ( ph /\ A C_ B ) -> A C_ B ) |
| 14 |
3
|
adantr |
|- ( ( ph /\ A C_ B ) -> B C_ A ) |
| 15 |
13 14
|
eqssd |
|- ( ( ph /\ A C_ B ) -> A = B ) |
| 16 |
15
|
oveq2d |
|- ( ( ph /\ A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) |`s A ) = ( ( ( subringAlg ` R ) ` C ) |`s B ) ) |
| 17 |
|
fvex |
|- ( ( subringAlg ` R ) ` C ) e. _V |
| 18 |
|
eqid |
|- ( Base ` ( ( subringAlg ` R ) ` C ) ) = ( Base ` ( ( subringAlg ` R ) ` C ) ) |
| 19 |
18
|
ressid |
|- ( ( ( subringAlg ` R ) ` C ) e. _V -> ( ( ( subringAlg ` R ) ` C ) |`s ( Base ` ( ( subringAlg ` R ) ` C ) ) ) = ( ( subringAlg ` R ) ` C ) ) |
| 20 |
17 19
|
mp1i |
|- ( ( ph /\ A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) |`s ( Base ` ( ( subringAlg ` R ) ` C ) ) ) = ( ( subringAlg ` R ) ` C ) ) |
| 21 |
12 16 20
|
3eqtr3d |
|- ( ( ph /\ A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) |`s B ) = ( ( subringAlg ` R ) ` C ) ) |
| 22 |
1
|
oveq2i |
|- ( R |`s A ) = ( R |`s ( Base ` R ) ) |
| 23 |
5
|
elexd |
|- ( ph -> R e. _V ) |
| 24 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 25 |
24
|
ressid |
|- ( R e. _V -> ( R |`s ( Base ` R ) ) = R ) |
| 26 |
23 25
|
syl |
|- ( ph -> ( R |`s ( Base ` R ) ) = R ) |
| 27 |
22 26
|
eqtrid |
|- ( ph -> ( R |`s A ) = R ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ A C_ B ) -> ( R |`s A ) = R ) |
| 29 |
15
|
oveq2d |
|- ( ( ph /\ A C_ B ) -> ( R |`s A ) = ( R |`s B ) ) |
| 30 |
29 2
|
eqtr4di |
|- ( ( ph /\ A C_ B ) -> ( R |`s A ) = S ) |
| 31 |
28 30
|
eqtr3d |
|- ( ( ph /\ A C_ B ) -> R = S ) |
| 32 |
31
|
fveq2d |
|- ( ( ph /\ A C_ B ) -> ( subringAlg ` R ) = ( subringAlg ` S ) ) |
| 33 |
32
|
fveq1d |
|- ( ( ph /\ A C_ B ) -> ( ( subringAlg ` R ) ` C ) = ( ( subringAlg ` S ) ` C ) ) |
| 34 |
21 33
|
eqtr2d |
|- ( ( ph /\ A C_ B ) -> ( ( subringAlg ` S ) ` C ) = ( ( ( subringAlg ` R ) ` C ) |`s B ) ) |
| 35 |
|
simpr |
|- ( ( ph /\ -. A C_ B ) -> -. A C_ B ) |
| 36 |
23
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> R e. _V ) |
| 37 |
1
|
fvexi |
|- A e. _V |
| 38 |
37
|
a1i |
|- ( ph -> A e. _V ) |
| 39 |
38 3
|
ssexd |
|- ( ph -> B e. _V ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> B e. _V ) |
| 41 |
2 1
|
ressval2 |
|- ( ( -. A C_ B /\ R e. _V /\ B e. _V ) -> S = ( R sSet <. ( Base ` ndx ) , ( B i^i A ) >. ) ) |
| 42 |
35 36 40 41
|
syl3anc |
|- ( ( ph /\ -. A C_ B ) -> S = ( R sSet <. ( Base ` ndx ) , ( B i^i A ) >. ) ) |
| 43 |
|
dfss2 |
|- ( B C_ A <-> ( B i^i A ) = B ) |
| 44 |
3 43
|
sylib |
|- ( ph -> ( B i^i A ) = B ) |
| 45 |
44
|
opeq2d |
|- ( ph -> <. ( Base ` ndx ) , ( B i^i A ) >. = <. ( Base ` ndx ) , B >. ) |
| 46 |
45
|
oveq2d |
|- ( ph -> ( R sSet <. ( Base ` ndx ) , ( B i^i A ) >. ) = ( R sSet <. ( Base ` ndx ) , B >. ) ) |
| 47 |
46
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> ( R sSet <. ( Base ` ndx ) , ( B i^i A ) >. ) = ( R sSet <. ( Base ` ndx ) , B >. ) ) |
| 48 |
42 47
|
eqtrd |
|- ( ( ph /\ -. A C_ B ) -> S = ( R sSet <. ( Base ` ndx ) , B >. ) ) |
| 49 |
2
|
oveq1i |
|- ( S |`s C ) = ( ( R |`s B ) |`s C ) |
| 50 |
|
ressabs |
|- ( ( B e. _V /\ C C_ B ) -> ( ( R |`s B ) |`s C ) = ( R |`s C ) ) |
| 51 |
39 4 50
|
syl2anc |
|- ( ph -> ( ( R |`s B ) |`s C ) = ( R |`s C ) ) |
| 52 |
49 51
|
eqtrid |
|- ( ph -> ( S |`s C ) = ( R |`s C ) ) |
| 53 |
52
|
opeq2d |
|- ( ph -> <. ( Scalar ` ndx ) , ( S |`s C ) >. = <. ( Scalar ` ndx ) , ( R |`s C ) >. ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> <. ( Scalar ` ndx ) , ( S |`s C ) >. = <. ( Scalar ` ndx ) , ( R |`s C ) >. ) |
| 55 |
48 54
|
oveq12d |
|- ( ( ph /\ -. A C_ B ) -> ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) = ( ( R sSet <. ( Base ` ndx ) , B >. ) sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) ) |
| 56 |
|
scandxnbasendx |
|- ( Scalar ` ndx ) =/= ( Base ` ndx ) |
| 57 |
56
|
a1i |
|- ( ph -> ( Scalar ` ndx ) =/= ( Base ` ndx ) ) |
| 58 |
|
ovexd |
|- ( ph -> ( R |`s C ) e. _V ) |
| 59 |
|
fvex |
|- ( Scalar ` ndx ) e. _V |
| 60 |
|
fvex |
|- ( Base ` ndx ) e. _V |
| 61 |
59 60
|
setscom |
|- ( ( ( R e. _V /\ ( Scalar ` ndx ) =/= ( Base ` ndx ) ) /\ ( ( R |`s C ) e. _V /\ B e. _V ) ) -> ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( R sSet <. ( Base ` ndx ) , B >. ) sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) ) |
| 62 |
23 57 58 39 61
|
syl22anc |
|- ( ph -> ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( R sSet <. ( Base ` ndx ) , B >. ) sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) ) |
| 63 |
62
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( R sSet <. ( Base ` ndx ) , B >. ) sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) ) |
| 64 |
55 63
|
eqtr4d |
|- ( ( ph /\ -. A C_ B ) -> ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) = ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) ) |
| 65 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 66 |
2 65
|
ressmulr |
|- ( B e. _V -> ( .r ` R ) = ( .r ` S ) ) |
| 67 |
39 66
|
syl |
|- ( ph -> ( .r ` R ) = ( .r ` S ) ) |
| 68 |
67
|
eqcomd |
|- ( ph -> ( .r ` S ) = ( .r ` R ) ) |
| 69 |
68
|
opeq2d |
|- ( ph -> <. ( .s ` ndx ) , ( .r ` S ) >. = <. ( .s ` ndx ) , ( .r ` R ) >. ) |
| 70 |
69
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> <. ( .s ` ndx ) , ( .r ` S ) >. = <. ( .s ` ndx ) , ( .r ` R ) >. ) |
| 71 |
64 70
|
oveq12d |
|- ( ( ph /\ -. A C_ B ) -> ( ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` S ) >. ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) ) |
| 72 |
|
ovexd |
|- ( ph -> ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) e. _V ) |
| 73 |
|
vscandxnbasendx |
|- ( .s ` ndx ) =/= ( Base ` ndx ) |
| 74 |
73
|
a1i |
|- ( ph -> ( .s ` ndx ) =/= ( Base ` ndx ) ) |
| 75 |
|
fvexd |
|- ( ph -> ( .r ` R ) e. _V ) |
| 76 |
|
fvex |
|- ( .s ` ndx ) e. _V |
| 77 |
76 60
|
setscom |
|- ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) e. _V /\ ( .s ` ndx ) =/= ( Base ` ndx ) ) /\ ( ( .r ` R ) e. _V /\ B e. _V ) ) -> ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) ) |
| 78 |
72 74 75 39 77
|
syl22anc |
|- ( ph -> ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) ) |
| 79 |
78
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) ) |
| 80 |
71 79
|
eqtr4d |
|- ( ( ph /\ -. A C_ B ) -> ( ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` S ) >. ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) ) |
| 81 |
68
|
opeq2d |
|- ( ph -> <. ( .i ` ndx ) , ( .r ` S ) >. = <. ( .i ` ndx ) , ( .r ` R ) >. ) |
| 82 |
81
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> <. ( .i ` ndx ) , ( .r ` S ) >. = <. ( .i ` ndx ) , ( .r ` R ) >. ) |
| 83 |
80 82
|
oveq12d |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` S ) >. ) sSet <. ( .i ` ndx ) , ( .r ` S ) >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) ) |
| 84 |
|
ovexd |
|- ( ph -> ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) e. _V ) |
| 85 |
|
ipndxnbasendx |
|- ( .i ` ndx ) =/= ( Base ` ndx ) |
| 86 |
85
|
a1i |
|- ( ph -> ( .i ` ndx ) =/= ( Base ` ndx ) ) |
| 87 |
|
fvex |
|- ( .i ` ndx ) e. _V |
| 88 |
87 60
|
setscom |
|- ( ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) e. _V /\ ( .i ` ndx ) =/= ( Base ` ndx ) ) /\ ( ( .r ` R ) e. _V /\ B e. _V ) ) -> ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) ) |
| 89 |
84 86 75 39 88
|
syl22anc |
|- ( ph -> ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) ) |
| 90 |
89
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) ) |
| 91 |
83 90
|
eqtr4d |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` S ) >. ) sSet <. ( .i ` ndx ) , ( .r ` S ) >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) ) |
| 92 |
2
|
ovexi |
|- S e. _V |
| 93 |
2 1
|
ressbas2 |
|- ( B C_ A -> B = ( Base ` S ) ) |
| 94 |
3 93
|
syl |
|- ( ph -> B = ( Base ` S ) ) |
| 95 |
4 94
|
sseqtrd |
|- ( ph -> C C_ ( Base ` S ) ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> C C_ ( Base ` S ) ) |
| 97 |
|
sraval |
|- ( ( S e. _V /\ C C_ ( Base ` S ) ) -> ( ( subringAlg ` S ) ` C ) = ( ( ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` S ) >. ) sSet <. ( .i ` ndx ) , ( .r ` S ) >. ) ) |
| 98 |
92 96 97
|
sylancr |
|- ( ( ph /\ -. A C_ B ) -> ( ( subringAlg ` S ) ` C ) = ( ( ( S sSet <. ( Scalar ` ndx ) , ( S |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` S ) >. ) sSet <. ( .i ` ndx ) , ( .r ` S ) >. ) ) |
| 99 |
10
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> A = ( Base ` ( ( subringAlg ` R ) ` C ) ) ) |
| 100 |
99
|
sseq1d |
|- ( ( ph /\ -. A C_ B ) -> ( A C_ B <-> ( Base ` ( ( subringAlg ` R ) ` C ) ) C_ B ) ) |
| 101 |
35 100
|
mtbid |
|- ( ( ph /\ -. A C_ B ) -> -. ( Base ` ( ( subringAlg ` R ) ` C ) ) C_ B ) |
| 102 |
|
fvexd |
|- ( ( ph /\ -. A C_ B ) -> ( ( subringAlg ` R ) ` C ) e. _V ) |
| 103 |
|
eqid |
|- ( ( ( subringAlg ` R ) ` C ) |`s B ) = ( ( ( subringAlg ` R ) ` C ) |`s B ) |
| 104 |
103 18
|
ressval2 |
|- ( ( -. ( Base ` ( ( subringAlg ` R ) ` C ) ) C_ B /\ ( ( subringAlg ` R ) ` C ) e. _V /\ B e. _V ) -> ( ( ( subringAlg ` R ) ` C ) |`s B ) = ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) >. ) ) |
| 105 |
101 102 40 104
|
syl3anc |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) |`s B ) = ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) >. ) ) |
| 106 |
10
|
ineq2d |
|- ( ph -> ( B i^i A ) = ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) ) |
| 107 |
106 44
|
eqtr3d |
|- ( ph -> ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) = B ) |
| 108 |
107
|
opeq2d |
|- ( ph -> <. ( Base ` ndx ) , ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) >. = <. ( Base ` ndx ) , B >. ) |
| 109 |
108
|
oveq2d |
|- ( ph -> ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) >. ) = ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , B >. ) ) |
| 110 |
109
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , ( B i^i ( Base ` ( ( subringAlg ` R ) ` C ) ) ) >. ) = ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , B >. ) ) |
| 111 |
|
sraval |
|- ( ( R e. V /\ C C_ ( Base ` R ) ) -> ( ( subringAlg ` R ) ` C ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) ) |
| 112 |
5 8 111
|
syl2anc |
|- ( ph -> ( ( subringAlg ` R ) ` C ) = ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) ) |
| 113 |
112
|
oveq1d |
|- ( ph -> ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) ) |
| 114 |
113
|
adantr |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) sSet <. ( Base ` ndx ) , B >. ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) ) |
| 115 |
105 110 114
|
3eqtrd |
|- ( ( ph /\ -. A C_ B ) -> ( ( ( subringAlg ` R ) ` C ) |`s B ) = ( ( ( ( R sSet <. ( Scalar ` ndx ) , ( R |`s C ) >. ) sSet <. ( .s ` ndx ) , ( .r ` R ) >. ) sSet <. ( .i ` ndx ) , ( .r ` R ) >. ) sSet <. ( Base ` ndx ) , B >. ) ) |
| 116 |
91 98 115
|
3eqtr4d |
|- ( ( ph /\ -. A C_ B ) -> ( ( subringAlg ` S ) ` C ) = ( ( ( subringAlg ` R ) ` C ) |`s B ) ) |
| 117 |
34 116
|
pm2.61dan |
|- ( ph -> ( ( subringAlg ` S ) ` C ) = ( ( ( subringAlg ` R ) ` C ) |`s B ) ) |