Metamath Proof Explorer


Theorem algextdeglem2

Description: Lemma for algextdeg . Both the ring of polynomials P and the field L generated by K and the algebraic element A can be considered as modules over the elements of F . Then, the evaluation map G , mapping polynomials to their evaluation at A , is a module homomorphism between those modules. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k K = E 𝑠 F
algextdeg.l L = E 𝑠 E fldGen F A
algextdeg.d D = deg 1 E
algextdeg.m M = E minPoly F
algextdeg.f φ E Field
algextdeg.e φ F SubDRing E
algextdeg.a φ A E IntgRing F
algextdeglem.o O = E evalSub 1 F
algextdeglem.y P = Poly 1 K
algextdeglem.u U = Base P
algextdeglem.g G = p U O p A
algextdeglem.n N = x U x P ~ QG Z
algextdeglem.z Z = G -1 0 L
algextdeglem.q Q = P / 𝑠 P ~ QG Z
algextdeglem.j J = p Base Q G p
Assertion algextdeglem2 φ G P LMHom subringAlg L F

Proof

Step Hyp Ref Expression
1 algextdeg.k K = E 𝑠 F
2 algextdeg.l L = E 𝑠 E fldGen F A
3 algextdeg.d D = deg 1 E
4 algextdeg.m M = E minPoly F
5 algextdeg.f φ E Field
6 algextdeg.e φ F SubDRing E
7 algextdeg.a φ A E IntgRing F
8 algextdeglem.o O = E evalSub 1 F
9 algextdeglem.y P = Poly 1 K
10 algextdeglem.u U = Base P
11 algextdeglem.g G = p U O p A
12 algextdeglem.n N = x U x P ~ QG Z
13 algextdeglem.z Z = G -1 0 L
14 algextdeglem.q Q = P / 𝑠 P ~ QG Z
15 algextdeglem.j J = p Base Q G p
16 issdrg F SubDRing E E DivRing F SubRing E E 𝑠 F DivRing
17 6 16 sylib φ E DivRing F SubRing E E 𝑠 F DivRing
18 17 simp2d φ F SubRing E
19 eqid subringAlg E F = subringAlg E F
20 19 sralmod F SubRing E subringAlg E F LMod
21 18 20 syl φ subringAlg E F LMod
22 eqid Base E = Base E
23 eqid E 𝑠 E fldGen F A = E 𝑠 E fldGen F A
24 5 flddrngd φ E DivRing
25 subrgsubg F SubRing E F SubGrp E
26 22 subgss F SubGrp E F Base E
27 18 25 26 3syl φ F Base E
28 eqid 0 E = 0 E
29 5 fldcrngd φ E CRing
30 8 1 22 28 29 18 irngssv φ E IntgRing F Base E
31 30 7 sseldd φ A Base E
32 31 snssd φ A Base E
33 27 32 unssd φ F A Base E
34 22 24 33 fldgensdrg φ E fldGen F A SubDRing E
35 issdrg E fldGen F A SubDRing E E DivRing E fldGen F A SubRing E E 𝑠 E fldGen F A DivRing
36 34 35 sylib φ E DivRing E fldGen F A SubRing E E 𝑠 E fldGen F A DivRing
37 36 simp2d φ E fldGen F A SubRing E
38 22 24 33 fldgenssid φ F A E fldGen F A
39 38 unssad φ F E fldGen F A
40 23 subsubrg E fldGen F A SubRing E F SubRing E 𝑠 E fldGen F A F SubRing E F E fldGen F A
41 40 biimpar E fldGen F A SubRing E F SubRing E F E fldGen F A F SubRing E 𝑠 E fldGen F A
42 37 18 39 41 syl12anc φ F SubRing E 𝑠 E fldGen F A
43 19 22 23 37 42 lsssra φ E fldGen F A LSubSp subringAlg E F
44 1 fveq2i Poly 1 K = Poly 1 E 𝑠 F
45 9 44 eqtri P = Poly 1 E 𝑠 F
46 5 adantr φ p U E Field
47 6 adantr φ p U F SubDRing E
48 31 adantr φ p U A Base E
49 simpr φ p U p U
50 22 8 45 10 46 47 48 49 evls1fldgencl φ p U O p A E fldGen F A
51 50 ralrimiva φ p U O p A E fldGen F A
52 11 rnmptss p U O p A E fldGen F A ran G E fldGen F A
53 51 52 syl φ ran G E fldGen F A
54 8 45 22 10 29 18 31 11 19 evls1maplmhm φ G P LMHom subringAlg E F
55 eqid subringAlg E F 𝑠 E fldGen F A = subringAlg E F 𝑠 E fldGen F A
56 eqid LSubSp subringAlg E F = LSubSp subringAlg E F
57 55 56 reslmhm2b subringAlg E F LMod E fldGen F A LSubSp subringAlg E F ran G E fldGen F A G P LMHom subringAlg E F G P LMHom subringAlg E F 𝑠 E fldGen F A
58 57 biimpa subringAlg E F LMod E fldGen F A LSubSp subringAlg E F ran G E fldGen F A G P LMHom subringAlg E F G P LMHom subringAlg E F 𝑠 E fldGen F A
59 21 43 53 54 58 syl31anc φ G P LMHom subringAlg E F 𝑠 E fldGen F A
60 22 24 33 fldgenssv φ E fldGen F A Base E
61 22 2 60 39 5 resssra φ subringAlg L F = subringAlg E F 𝑠 E fldGen F A
62 61 oveq2d φ P LMHom subringAlg L F = P LMHom subringAlg E F 𝑠 E fldGen F A
63 59 62 eleqtrrd φ G P LMHom subringAlg L F