Step |
Hyp |
Ref |
Expression |
1 |
|
algextdeg.k |
|
2 |
|
algextdeg.l |
|
3 |
|
algextdeg.d |
|
4 |
|
algextdeg.m |
|
5 |
|
algextdeg.f |
|
6 |
|
algextdeg.e |
|
7 |
|
algextdeg.a |
|
8 |
|
algextdeglem.o |
|
9 |
|
algextdeglem.y |
|
10 |
|
algextdeglem.u |
|
11 |
|
algextdeglem.g |
|
12 |
|
algextdeglem.n |
|
13 |
|
algextdeglem.z |
|
14 |
|
algextdeglem.q |
|
15 |
|
algextdeglem.j |
|
16 |
|
issdrg |
|
17 |
6 16
|
sylib |
|
18 |
17
|
simp2d |
|
19 |
|
eqid |
|
20 |
19
|
sralmod |
|
21 |
18 20
|
syl |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
5
|
flddrngd |
|
25 |
|
subrgsubg |
|
26 |
22
|
subgss |
|
27 |
18 25 26
|
3syl |
|
28 |
|
eqid |
|
29 |
5
|
fldcrngd |
|
30 |
8 1 22 28 29 18
|
irngssv |
|
31 |
30 7
|
sseldd |
|
32 |
31
|
snssd |
|
33 |
27 32
|
unssd |
|
34 |
22 24 33
|
fldgensdrg |
|
35 |
|
issdrg |
|
36 |
34 35
|
sylib |
|
37 |
36
|
simp2d |
|
38 |
22 24 33
|
fldgenssid |
|
39 |
38
|
unssad |
|
40 |
23
|
subsubrg |
|
41 |
40
|
biimpar |
|
42 |
37 18 39 41
|
syl12anc |
|
43 |
19 22 23 37 42
|
lsssra |
|
44 |
1
|
fveq2i |
|
45 |
9 44
|
eqtri |
|
46 |
5
|
adantr |
|
47 |
6
|
adantr |
|
48 |
31
|
adantr |
|
49 |
|
simpr |
|
50 |
22 8 45 10 46 47 48 49
|
evls1fldgencl |
|
51 |
50
|
ralrimiva |
|
52 |
11
|
rnmptss |
|
53 |
51 52
|
syl |
|
54 |
8 45 22 10 29 18 31 11 19
|
evls1maplmhm |
|
55 |
|
eqid |
|
56 |
|
eqid |
|
57 |
55 56
|
reslmhm2b |
|
58 |
57
|
biimpa |
|
59 |
21 43 53 54 58
|
syl31anc |
|
60 |
22 24 33
|
fldgenssv |
|
61 |
22 2 60 39 5
|
resssra |
|
62 |
61
|
oveq2d |
|
63 |
59 62
|
eleqtrrd |
|