| Step |
Hyp |
Ref |
Expression |
| 1 |
|
algextdeg.k |
|
| 2 |
|
algextdeg.l |
|
| 3 |
|
algextdeg.d |
|
| 4 |
|
algextdeg.m |
|
| 5 |
|
algextdeg.f |
|
| 6 |
|
algextdeg.e |
|
| 7 |
|
algextdeg.a |
|
| 8 |
|
algextdeglem.o |
|
| 9 |
|
algextdeglem.y |
|
| 10 |
|
algextdeglem.u |
|
| 11 |
|
algextdeglem.g |
|
| 12 |
|
algextdeglem.n |
|
| 13 |
|
algextdeglem.z |
|
| 14 |
|
algextdeglem.q |
|
| 15 |
|
algextdeglem.j |
|
| 16 |
|
issdrg |
|
| 17 |
6 16
|
sylib |
|
| 18 |
17
|
simp2d |
|
| 19 |
|
eqid |
|
| 20 |
19
|
sralmod |
|
| 21 |
18 20
|
syl |
|
| 22 |
|
eqid |
|
| 23 |
|
eqid |
|
| 24 |
5
|
flddrngd |
|
| 25 |
|
subrgsubg |
|
| 26 |
22
|
subgss |
|
| 27 |
18 25 26
|
3syl |
|
| 28 |
|
eqid |
|
| 29 |
5
|
fldcrngd |
|
| 30 |
8 1 22 28 29 18
|
irngssv |
|
| 31 |
30 7
|
sseldd |
|
| 32 |
31
|
snssd |
|
| 33 |
27 32
|
unssd |
|
| 34 |
22 24 33
|
fldgensdrg |
|
| 35 |
|
issdrg |
|
| 36 |
34 35
|
sylib |
|
| 37 |
36
|
simp2d |
|
| 38 |
22 24 33
|
fldgenssid |
|
| 39 |
38
|
unssad |
|
| 40 |
23
|
subsubrg |
|
| 41 |
40
|
biimpar |
|
| 42 |
37 18 39 41
|
syl12anc |
|
| 43 |
19 22 23 37 42
|
lsssra |
|
| 44 |
1
|
fveq2i |
|
| 45 |
9 44
|
eqtri |
|
| 46 |
5
|
adantr |
|
| 47 |
6
|
adantr |
|
| 48 |
31
|
adantr |
|
| 49 |
|
simpr |
|
| 50 |
22 8 45 10 46 47 48 49
|
evls1fldgencl |
|
| 51 |
50
|
ralrimiva |
|
| 52 |
11
|
rnmptss |
|
| 53 |
51 52
|
syl |
|
| 54 |
8 45 22 10 29 18 31 11 19
|
evls1maplmhm |
|
| 55 |
|
eqid |
|
| 56 |
|
eqid |
|
| 57 |
55 56
|
reslmhm2b |
|
| 58 |
57
|
biimpa |
|
| 59 |
21 43 53 54 58
|
syl31anc |
|
| 60 |
22 24 33
|
fldgenssv |
|
| 61 |
22 2 60 39 5
|
resssra |
|
| 62 |
61
|
oveq2d |
|
| 63 |
59 62
|
eleqtrrd |
|