Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reslmhm2.u | |
|
reslmhm2.l | |
||
Assertion | reslmhm2b | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reslmhm2.u | |
|
2 | reslmhm2.l | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | lmhmlmod1 | |
|
10 | 9 | adantl | |
11 | simpl1 | |
|
12 | simpl2 | |
|
13 | 1 2 | lsslmod | |
14 | 11 12 13 | syl2anc | |
15 | eqid | |
|
16 | 1 15 | resssca | |
17 | 16 | 3ad2ant2 | |
18 | 6 15 | lmhmsca | |
19 | 17 18 | sylan9req | |
20 | lmghm | |
|
21 | 2 | lsssubg | |
22 | 1 | resghm2b | |
23 | 21 22 | stoic3 | |
24 | 23 | biimpa | |
25 | 20 24 | sylan2 | |
26 | eqid | |
|
27 | 6 8 3 4 26 | lmhmlin | |
28 | 27 | 3expb | |
29 | 28 | adantll | |
30 | simpll2 | |
|
31 | 1 26 | ressvsca | |
32 | 31 | oveqd | |
33 | 30 32 | syl | |
34 | 29 33 | eqtrd | |
35 | 3 4 5 6 7 8 10 14 19 25 34 | islmhmd | |
36 | simpr | |
|
37 | simpl1 | |
|
38 | simpl2 | |
|
39 | 1 2 | reslmhm2 | |
40 | 36 37 38 39 | syl3anc | |
41 | 35 40 | impbida | |