Metamath Proof Explorer


Theorem lmhmeql

Description: The equalizer of two module homomorphisms is a subspace. (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Hypothesis lmhmeql.u U = LSubSp S
Assertion lmhmeql F S LMHom T G S LMHom T dom F G U

Proof

Step Hyp Ref Expression
1 lmhmeql.u U = LSubSp S
2 lmghm F S LMHom T F S GrpHom T
3 lmghm G S LMHom T G S GrpHom T
4 ghmeql F S GrpHom T G S GrpHom T dom F G SubGrp S
5 2 3 4 syl2an F S LMHom T G S LMHom T dom F G SubGrp S
6 fveq2 z = x S y F z = F x S y
7 fveq2 z = x S y G z = G x S y
8 6 7 eqeq12d z = x S y F z = G z F x S y = G x S y
9 lmhmlmod1 F S LMHom T S LMod
10 9 adantr F S LMHom T G S LMHom T S LMod
11 10 ad2antrr F S LMHom T G S LMHom T x Base Scalar S y Base S F y = G y S LMod
12 simplr F S LMHom T G S LMHom T x Base Scalar S y Base S F y = G y x Base Scalar S
13 simprl F S LMHom T G S LMHom T x Base Scalar S y Base S F y = G y y Base S
14 eqid Base S = Base S
15 eqid Scalar S = Scalar S
16 eqid S = S
17 eqid Base Scalar S = Base Scalar S
18 14 15 16 17 lmodvscl S LMod x Base Scalar S y Base S x S y Base S
19 11 12 13 18 syl3anc F S LMHom T G S LMHom T x Base Scalar S y Base S F y = G y x S y Base S
20 oveq2 F y = G y x T F y = x T G y
21 20 ad2antll F S LMHom T G S LMHom T x Base Scalar S y Base S F y = G y x T F y = x T G y
22 simplll F S LMHom T G S LMHom T x Base Scalar S y Base S F y = G y F S LMHom T
23 eqid T = T
24 15 17 14 16 23 lmhmlin F S LMHom T x Base Scalar S y Base S F x S y = x T F y
25 22 12 13 24 syl3anc F S LMHom T G S LMHom T x Base Scalar S y Base S F y = G y F x S y = x T F y
26 simpllr F S LMHom T G S LMHom T x Base Scalar S y Base S F y = G y G S LMHom T
27 15 17 14 16 23 lmhmlin G S LMHom T x Base Scalar S y Base S G x S y = x T G y
28 26 12 13 27 syl3anc F S LMHom T G S LMHom T x Base Scalar S y Base S F y = G y G x S y = x T G y
29 21 25 28 3eqtr4d F S LMHom T G S LMHom T x Base Scalar S y Base S F y = G y F x S y = G x S y
30 8 19 29 elrabd F S LMHom T G S LMHom T x Base Scalar S y Base S F y = G y x S y z Base S | F z = G z
31 30 expr F S LMHom T G S LMHom T x Base Scalar S y Base S F y = G y x S y z Base S | F z = G z
32 31 ralrimiva F S LMHom T G S LMHom T x Base Scalar S y Base S F y = G y x S y z Base S | F z = G z
33 eqid Base T = Base T
34 14 33 lmhmf F S LMHom T F : Base S Base T
35 34 ffnd F S LMHom T F Fn Base S
36 14 33 lmhmf G S LMHom T G : Base S Base T
37 36 ffnd G S LMHom T G Fn Base S
38 fndmin F Fn Base S G Fn Base S dom F G = z Base S | F z = G z
39 35 37 38 syl2an F S LMHom T G S LMHom T dom F G = z Base S | F z = G z
40 39 adantr F S LMHom T G S LMHom T x Base Scalar S dom F G = z Base S | F z = G z
41 eleq2 dom F G = z Base S | F z = G z x S y dom F G x S y z Base S | F z = G z
42 41 raleqbi1dv dom F G = z Base S | F z = G z y dom F G x S y dom F G y z Base S | F z = G z x S y z Base S | F z = G z
43 fveq2 z = y F z = F y
44 fveq2 z = y G z = G y
45 43 44 eqeq12d z = y F z = G z F y = G y
46 45 ralrab y z Base S | F z = G z x S y z Base S | F z = G z y Base S F y = G y x S y z Base S | F z = G z
47 42 46 bitrdi dom F G = z Base S | F z = G z y dom F G x S y dom F G y Base S F y = G y x S y z Base S | F z = G z
48 40 47 syl F S LMHom T G S LMHom T x Base Scalar S y dom F G x S y dom F G y Base S F y = G y x S y z Base S | F z = G z
49 32 48 mpbird F S LMHom T G S LMHom T x Base Scalar S y dom F G x S y dom F G
50 49 ralrimiva F S LMHom T G S LMHom T x Base Scalar S y dom F G x S y dom F G
51 15 17 14 16 1 islss4 S LMod dom F G U dom F G SubGrp S x Base Scalar S y dom F G x S y dom F G
52 10 51 syl F S LMHom T G S LMHom T dom F G U dom F G SubGrp S x Base Scalar S y dom F G x S y dom F G
53 5 50 52 mpbir2and F S LMHom T G S LMHom T dom F G U