| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reslmhm2.u |
⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) |
| 2 |
|
reslmhm2.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑇 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 4 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
| 5 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
| 6 |
|
eqid |
⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) |
| 7 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
| 8 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) |
| 9 |
|
lmhmlmod1 |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) |
| 10 |
9
|
adantl |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝑆 ∈ LMod ) |
| 11 |
|
simpl1 |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝑇 ∈ LMod ) |
| 12 |
|
simpl2 |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝑋 ∈ 𝐿 ) |
| 13 |
1 2
|
lsslmod |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝑈 ∈ LMod ) |
| 14 |
11 12 13
|
syl2anc |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝑈 ∈ LMod ) |
| 15 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
| 16 |
1 15
|
resssca |
⊢ ( 𝑋 ∈ 𝐿 → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑈 ) ) |
| 17 |
16
|
3ad2ant2 |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑈 ) ) |
| 18 |
6 15
|
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 19 |
17 18
|
sylan9req |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑆 ) ) |
| 20 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 21 |
2
|
lsssubg |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) |
| 22 |
1
|
resghm2b |
⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) ) |
| 23 |
21 22
|
stoic3 |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) ) |
| 24 |
23
|
biimpa |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) |
| 25 |
20 24
|
sylan2 |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) |
| 26 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) |
| 27 |
6 8 3 4 26
|
lmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 28 |
27
|
3expb |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 29 |
28
|
adantll |
⊢ ( ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 30 |
|
simpll2 |
⊢ ( ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑋 ∈ 𝐿 ) |
| 31 |
1 26
|
ressvsca |
⊢ ( 𝑋 ∈ 𝐿 → ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑈 ) ) |
| 32 |
31
|
oveqd |
⊢ ( 𝑋 ∈ 𝐿 → ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 33 |
30 32
|
syl |
⊢ ( ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 34 |
29 33
|
eqtrd |
⊢ ( ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 35 |
3 4 5 6 7 8 10 14 19 25 34
|
islmhmd |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) |
| 36 |
|
simpr |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) |
| 37 |
|
simpl1 |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) → 𝑇 ∈ LMod ) |
| 38 |
|
simpl2 |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) → 𝑋 ∈ 𝐿 ) |
| 39 |
1 2
|
reslmhm2 |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 40 |
36 37 38 39
|
syl3anc |
⊢ ( ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) ∧ 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 41 |
35 40
|
impbida |
⊢ ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ↔ 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ) ) |