Metamath Proof Explorer


Theorem fldgenssv

Description: A generated subfield is a subset of the field's base. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses fldgenval.1
|- B = ( Base ` F )
fldgenval.2
|- ( ph -> F e. DivRing )
fldgenval.3
|- ( ph -> S C_ B )
Assertion fldgenssv
|- ( ph -> ( F fldGen S ) C_ B )

Proof

Step Hyp Ref Expression
1 fldgenval.1
 |-  B = ( Base ` F )
2 fldgenval.2
 |-  ( ph -> F e. DivRing )
3 fldgenval.3
 |-  ( ph -> S C_ B )
4 1 2 3 fldgenval
 |-  ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } )
5 sseq2
 |-  ( a = B -> ( S C_ a <-> S C_ B ) )
6 1 sdrgid
 |-  ( F e. DivRing -> B e. ( SubDRing ` F ) )
7 2 6 syl
 |-  ( ph -> B e. ( SubDRing ` F ) )
8 5 7 3 elrabd
 |-  ( ph -> B e. { a e. ( SubDRing ` F ) | S C_ a } )
9 intss1
 |-  ( B e. { a e. ( SubDRing ` F ) | S C_ a } -> |^| { a e. ( SubDRing ` F ) | S C_ a } C_ B )
10 8 9 syl
 |-  ( ph -> |^| { a e. ( SubDRing ` F ) | S C_ a } C_ B )
11 4 10 eqsstrd
 |-  ( ph -> ( F fldGen S ) C_ B )