Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenval.1 |
|- B = ( Base ` F ) |
2 |
|
fldgenval.2 |
|- ( ph -> F e. DivRing ) |
3 |
|
fldgenval.3 |
|- ( ph -> S C_ B ) |
4 |
1 2 3
|
fldgenval |
|- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
5 |
|
sseq2 |
|- ( a = B -> ( S C_ a <-> S C_ B ) ) |
6 |
1
|
sdrgid |
|- ( F e. DivRing -> B e. ( SubDRing ` F ) ) |
7 |
2 6
|
syl |
|- ( ph -> B e. ( SubDRing ` F ) ) |
8 |
5 7 3
|
elrabd |
|- ( ph -> B e. { a e. ( SubDRing ` F ) | S C_ a } ) |
9 |
|
intss1 |
|- ( B e. { a e. ( SubDRing ` F ) | S C_ a } -> |^| { a e. ( SubDRing ` F ) | S C_ a } C_ B ) |
10 |
8 9
|
syl |
|- ( ph -> |^| { a e. ( SubDRing ` F ) | S C_ a } C_ B ) |
11 |
4 10
|
eqsstrd |
|- ( ph -> ( F fldGen S ) C_ B ) |