| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldgenval.1 |
|- B = ( Base ` F ) |
| 2 |
|
fldgenval.2 |
|- ( ph -> F e. DivRing ) |
| 3 |
|
fldgenval.3 |
|- ( ph -> S C_ B ) |
| 4 |
1 2 3
|
fldgenval |
|- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
| 5 |
|
sseq2 |
|- ( a = B -> ( S C_ a <-> S C_ B ) ) |
| 6 |
1
|
sdrgid |
|- ( F e. DivRing -> B e. ( SubDRing ` F ) ) |
| 7 |
2 6
|
syl |
|- ( ph -> B e. ( SubDRing ` F ) ) |
| 8 |
5 7 3
|
elrabd |
|- ( ph -> B e. { a e. ( SubDRing ` F ) | S C_ a } ) |
| 9 |
|
intss1 |
|- ( B e. { a e. ( SubDRing ` F ) | S C_ a } -> |^| { a e. ( SubDRing ` F ) | S C_ a } C_ B ) |
| 10 |
8 9
|
syl |
|- ( ph -> |^| { a e. ( SubDRing ` F ) | S C_ a } C_ B ) |
| 11 |
4 10
|
eqsstrd |
|- ( ph -> ( F fldGen S ) C_ B ) |