| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldgenval.1 |
|- B = ( Base ` F ) |
| 2 |
|
fldgenval.2 |
|- ( ph -> F e. DivRing ) |
| 3 |
|
fldgenval.3 |
|- ( ph -> S C_ B ) |
| 4 |
|
fldgenss.t |
|- ( ph -> T C_ S ) |
| 5 |
4
|
adantr |
|- ( ( ph /\ S C_ a ) -> T C_ S ) |
| 6 |
|
simpr |
|- ( ( ph /\ S C_ a ) -> S C_ a ) |
| 7 |
5 6
|
sstrd |
|- ( ( ph /\ S C_ a ) -> T C_ a ) |
| 8 |
7
|
ex |
|- ( ph -> ( S C_ a -> T C_ a ) ) |
| 9 |
8
|
adantr |
|- ( ( ph /\ a e. ( SubDRing ` F ) ) -> ( S C_ a -> T C_ a ) ) |
| 10 |
9
|
ss2rabdv |
|- ( ph -> { a e. ( SubDRing ` F ) | S C_ a } C_ { a e. ( SubDRing ` F ) | T C_ a } ) |
| 11 |
|
intss |
|- ( { a e. ( SubDRing ` F ) | S C_ a } C_ { a e. ( SubDRing ` F ) | T C_ a } -> |^| { a e. ( SubDRing ` F ) | T C_ a } C_ |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
| 12 |
10 11
|
syl |
|- ( ph -> |^| { a e. ( SubDRing ` F ) | T C_ a } C_ |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
| 13 |
4 3
|
sstrd |
|- ( ph -> T C_ B ) |
| 14 |
1 2 13
|
fldgenval |
|- ( ph -> ( F fldGen T ) = |^| { a e. ( SubDRing ` F ) | T C_ a } ) |
| 15 |
1 2 3
|
fldgenval |
|- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
| 16 |
12 14 15
|
3sstr4d |
|- ( ph -> ( F fldGen T ) C_ ( F fldGen S ) ) |