Metamath Proof Explorer


Theorem spanss

Description: Ordering relationship for the spans of subsets of Hilbert space. (Contributed by NM, 2-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion spanss
|- ( ( B C_ ~H /\ A C_ B ) -> ( span ` A ) C_ ( span ` B ) )

Proof

Step Hyp Ref Expression
1 sstr2
 |-  ( A C_ B -> ( B C_ x -> A C_ x ) )
2 1 ralrimivw
 |-  ( A C_ B -> A. x e. SH ( B C_ x -> A C_ x ) )
3 ss2rab
 |-  ( { x e. SH | B C_ x } C_ { x e. SH | A C_ x } <-> A. x e. SH ( B C_ x -> A C_ x ) )
4 2 3 sylibr
 |-  ( A C_ B -> { x e. SH | B C_ x } C_ { x e. SH | A C_ x } )
5 intss
 |-  ( { x e. SH | B C_ x } C_ { x e. SH | A C_ x } -> |^| { x e. SH | A C_ x } C_ |^| { x e. SH | B C_ x } )
6 4 5 syl
 |-  ( A C_ B -> |^| { x e. SH | A C_ x } C_ |^| { x e. SH | B C_ x } )
7 6 adantl
 |-  ( ( B C_ ~H /\ A C_ B ) -> |^| { x e. SH | A C_ x } C_ |^| { x e. SH | B C_ x } )
8 sstr
 |-  ( ( A C_ B /\ B C_ ~H ) -> A C_ ~H )
9 8 ancoms
 |-  ( ( B C_ ~H /\ A C_ B ) -> A C_ ~H )
10 spanval
 |-  ( A C_ ~H -> ( span ` A ) = |^| { x e. SH | A C_ x } )
11 9 10 syl
 |-  ( ( B C_ ~H /\ A C_ B ) -> ( span ` A ) = |^| { x e. SH | A C_ x } )
12 spanval
 |-  ( B C_ ~H -> ( span ` B ) = |^| { x e. SH | B C_ x } )
13 12 adantr
 |-  ( ( B C_ ~H /\ A C_ B ) -> ( span ` B ) = |^| { x e. SH | B C_ x } )
14 7 11 13 3sstr4d
 |-  ( ( B C_ ~H /\ A C_ B ) -> ( span ` A ) C_ ( span ` B ) )