Step |
Hyp |
Ref |
Expression |
1 |
|
ocss |
|- ( A C_ ~H -> ( _|_ ` A ) C_ ~H ) |
2 |
|
ocss |
|- ( ( _|_ ` A ) C_ ~H -> ( _|_ ` ( _|_ ` A ) ) C_ ~H ) |
3 |
1 2
|
syl |
|- ( A C_ ~H -> ( _|_ ` ( _|_ ` A ) ) C_ ~H ) |
4 |
|
ococss |
|- ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
5 |
|
spanss |
|- ( ( ( _|_ ` ( _|_ ` A ) ) C_ ~H /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) -> ( span ` A ) C_ ( span ` ( _|_ ` ( _|_ ` A ) ) ) ) |
6 |
3 4 5
|
syl2anc |
|- ( A C_ ~H -> ( span ` A ) C_ ( span ` ( _|_ ` ( _|_ ` A ) ) ) ) |
7 |
|
ocsh |
|- ( ( _|_ ` A ) C_ ~H -> ( _|_ ` ( _|_ ` A ) ) e. SH ) |
8 |
|
spanid |
|- ( ( _|_ ` ( _|_ ` A ) ) e. SH -> ( span ` ( _|_ ` ( _|_ ` A ) ) ) = ( _|_ ` ( _|_ ` A ) ) ) |
9 |
1 7 8
|
3syl |
|- ( A C_ ~H -> ( span ` ( _|_ ` ( _|_ ` A ) ) ) = ( _|_ ` ( _|_ ` A ) ) ) |
10 |
6 9
|
sseqtrd |
|- ( A C_ ~H -> ( span ` A ) C_ ( _|_ ` ( _|_ ` A ) ) ) |