| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ocss |
|- ( A C_ ~H -> ( _|_ ` A ) C_ ~H ) |
| 2 |
|
ocss |
|- ( ( _|_ ` A ) C_ ~H -> ( _|_ ` ( _|_ ` A ) ) C_ ~H ) |
| 3 |
1 2
|
syl |
|- ( A C_ ~H -> ( _|_ ` ( _|_ ` A ) ) C_ ~H ) |
| 4 |
|
ococss |
|- ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 5 |
|
spanss |
|- ( ( ( _|_ ` ( _|_ ` A ) ) C_ ~H /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) -> ( span ` A ) C_ ( span ` ( _|_ ` ( _|_ ` A ) ) ) ) |
| 6 |
3 4 5
|
syl2anc |
|- ( A C_ ~H -> ( span ` A ) C_ ( span ` ( _|_ ` ( _|_ ` A ) ) ) ) |
| 7 |
|
ocsh |
|- ( ( _|_ ` A ) C_ ~H -> ( _|_ ` ( _|_ ` A ) ) e. SH ) |
| 8 |
|
spanid |
|- ( ( _|_ ` ( _|_ ` A ) ) e. SH -> ( span ` ( _|_ ` ( _|_ ` A ) ) ) = ( _|_ ` ( _|_ ` A ) ) ) |
| 9 |
1 7 8
|
3syl |
|- ( A C_ ~H -> ( span ` ( _|_ ` ( _|_ ` A ) ) ) = ( _|_ ` ( _|_ ` A ) ) ) |
| 10 |
6 9
|
sseqtrd |
|- ( A C_ ~H -> ( span ` A ) C_ ( _|_ ` ( _|_ ` A ) ) ) |