| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldgenval.1 |
|- B = ( Base ` F ) |
| 2 |
|
fldgenval.2 |
|- ( ph -> F e. DivRing ) |
| 3 |
|
fldgenidfld.s |
|- ( ph -> S e. ( SubDRing ` F ) ) |
| 4 |
1
|
sdrgss |
|- ( S e. ( SubDRing ` F ) -> S C_ B ) |
| 5 |
3 4
|
syl |
|- ( ph -> S C_ B ) |
| 6 |
1 2 5
|
fldgenval |
|- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
| 7 |
|
intmin |
|- ( S e. ( SubDRing ` F ) -> |^| { a e. ( SubDRing ` F ) | S C_ a } = S ) |
| 8 |
3 7
|
syl |
|- ( ph -> |^| { a e. ( SubDRing ` F ) | S C_ a } = S ) |
| 9 |
6 8
|
eqtrd |
|- ( ph -> ( F fldGen S ) = S ) |