| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldgenval.1 |
|- B = ( Base ` F ) |
| 2 |
|
fldgenval.2 |
|- ( ph -> F e. DivRing ) |
| 3 |
|
fldgenidfld.s |
|- ( ph -> S e. ( SubDRing ` F ) ) |
| 4 |
|
fldgenssp.t |
|- ( ph -> T C_ S ) |
| 5 |
|
issdrg |
|- ( S e. ( SubDRing ` F ) <-> ( F e. DivRing /\ S e. ( SubRing ` F ) /\ ( F |`s S ) e. DivRing ) ) |
| 6 |
3 5
|
sylib |
|- ( ph -> ( F e. DivRing /\ S e. ( SubRing ` F ) /\ ( F |`s S ) e. DivRing ) ) |
| 7 |
6
|
simp2d |
|- ( ph -> S e. ( SubRing ` F ) ) |
| 8 |
1
|
subrgss |
|- ( S e. ( SubRing ` F ) -> S C_ B ) |
| 9 |
7 8
|
syl |
|- ( ph -> S C_ B ) |
| 10 |
4 9
|
sstrd |
|- ( ph -> T C_ B ) |
| 11 |
1 2 10
|
fldgenval |
|- ( ph -> ( F fldGen T ) = |^| { a e. ( SubDRing ` F ) | T C_ a } ) |
| 12 |
|
sseq2 |
|- ( a = S -> ( T C_ a <-> T C_ S ) ) |
| 13 |
12 3 4
|
elrabd |
|- ( ph -> S e. { a e. ( SubDRing ` F ) | T C_ a } ) |
| 14 |
|
intss1 |
|- ( S e. { a e. ( SubDRing ` F ) | T C_ a } -> |^| { a e. ( SubDRing ` F ) | T C_ a } C_ S ) |
| 15 |
13 14
|
syl |
|- ( ph -> |^| { a e. ( SubDRing ` F ) | T C_ a } C_ S ) |
| 16 |
11 15
|
eqsstrd |
|- ( ph -> ( F fldGen T ) C_ S ) |